Steering Workflows with
Artificial Intelligence

—
E C\"‘ P EXRASCHLE
c COMPUTIMNG
Cleared for public release \(\) PROJECT
N

Logan Ward

Computational Scientist

Data Science and Learning Division
Argonne National Laboratory

16 April 2025
m ' .'DQ") !hl"'-“-l'd U.S. DEPARTMENT OF Dﬂ-’ice ﬂf
o v..,& o A WJ ENERGY Science

“Computational Campaigns” are a common tool

High-Throughput Design Parameter Estimation

S i
. %@ 5o o 1. Redox potential

2. Solubility

3. Stabill
oGy AP) 2 J

Resulls 4. More focused
analysis o computational study

= How do we adapt

Sou.rce. Cheng et al.&_(zoﬁ) th eS e ap p ro aC h eS to

Exascale computing? _‘ ..:{,
User ‘ raata

Initial State

Week 01: Wednesdayis &/ Taraet
09:00AM arge

Digital Twins, Forecasting Learning Control Policies

v =
PROJECT

Expanding Computational Campaigns to the ExaScale

Current Model: Humans steer HPC, HPC performs simulations (Months-Years)

Current Model Won't Scale. Humans are slow. Slow decisions, slow to learn

Electrolytes
Generate
k\‘ Tasks

Current

g Knowledge

Better Batteries

Improved
Knowledge

g e

Generate Simulate Better Science

Wat lust
ater Clusters Tasks Tasks

1
T T T T T T T " " Exascale HPCW

Our goal: HPC steering itself (Days-Weeks)!

Parallelism makes active learning on HPC difficult

Root Problem: Sequential search is impractical, we must run >1 simulation at once

Consider a few parallel strategies...

o [LLLLLLLLLLALL AL L
S 801 g 80 - 9 80 -
5 60- S 60 ’ ‘ 5 60-
® IS B
N 40 - N 404 N 40
= 5 ~ 20- ~ 20-
O T T T 0 v 1 1 T 0 T T
0 20 40 60 80 0 20 40 60 80 0 20 40
Walltime (s) Walltime (s) Walltime (s)
Wait for N tasks to complete, Pick new tasks as soon Maintain a task queue
then pick next batch as one completes
t Most information per decision | Least information per decision
catest utilization

R aall Bottom Line: Active learning on HPC requires intelligent policies

Today’s Talk:
- Show the broad scope of AI+HPC for Workflows

. - lllustrate one way of building steered workflows
Ed - Encourage a collective ecosystem

What kinds of
application patterns
exist?

There's some nice work on this by Shantenu Jha'’s team

Data staging
[optional]

ECP

EXRSCALE

HPC
simulation X

Al
analysis

Trigger
other simulations

Wronnnn

HPC

simulation Y

... [next stage]

COMPUTING

PROJECT

| Motif / Scope

| Interaction Patterns

| Coupling Patterns

| Example Use Case

Steering
Al improving HPC

- Control and data flow in
one direction: data from
HPC to Al control from Al
to HPC

- One Al to one or many
HPC

- Optionally human in the
loop

- Real-time requirements

- Dynamic composition with
HPC simulations spawned or
terminated on the fly

- Usually running in one fa-
cility

Al-oul-HPC

- Command-and-control of
physical experiments and
simulations (e.g. between
shots feedback for plasma
physics)

Multistage
Pipeline
Al improving HPC

- Data flows in one direction
from HPC to one or many
Al or HPC components

- Al filters control many
HP(C simulations

- Typically interaction done
without human in the loop

- Real-time requirements

- Dynamic composition with
branching in the workflow
based on filters

- Running in one facility

Al-in-HPC and
HPC

- Large-scale MD simula-
tions using Al sampling
of a system with
degrees of freedom

Al-out-

many

Inverse
Design
Al improving HPC
HPC improving Al

- Control flow from Al to
HPC

- Multiple HPC simulations
and /or instruments sending
data to Al (one or many)

- Typically interaction done
without human in the loop

- Real-time is optional (Al
can use existing datasets)

- Execution can be conecur-
rent or asynchronous

- Running in one facility

Al-in-HPC
- Materials discovery to ad-
dress the problem of data
sparsity and reduce the
need for domain-specilic
knowledge

Digital Replica

Al improving HPC

TITW S .2 AT

- Data/control flow in both

directions combining exper-

. o

Read this! Brewer et al. arxXiv/2406.14315

- Real-time requirements
with monitoring and visual-

Al-aboul-HPC'

- Digital twin of a [usion

https://arxiv.org/abs/2406.14315

“Computational Campaigns” are a common tool

High-Throughput Design Parameter Estimation

3, Stability

4. More focused
computational study

wwWednesday
09:00AM

5“:.{" p s -
Digital Twins, Forecasting Learning Control Policies

Target

Our Approach: Colmena

Ward et al. MLHPC @ SC’21 E\(\E\\; oscns

https://ieeexplore.ieee.org/abstract/document/9653177

What kind of “intelligence” goes into steering applications

Observation: We have many policy ideas...
— Submit a new simulation once another completes <
— Retrain a model after 8 successful computations Conditional logic

Event-triggered

— Allocate more nodes to inference after models finish training < Resource management

and others are possible.

Solution: We need a way of programming agents to encode such policies
Agents must be able to react to events

Allow the agent to hold state

Ability to re-allocate resources between pools

Separate agent from how to run tasks and interface with HPC

IR

Building a Colmena app: Defining the “tasks” and “thinker”

class Thinker(BaseThinker):
def _init_ (self, queue):
super().__init__ (queue)

self.remaining_guesses = 10

Key pOIntS: self.best_guess = None
1. Subclass the “BaseThinker” abstract class self.best_result = inf

Mark “agent” operations form the policy

result processor(topic=‘simulate’
_p p

2
3. Communicate with method server via gqueues def consumer(self, result):
. . . . s e # Update the best result, check for termination
4. Communicate with other via Threading primitives P 4
if result.value < self.best_result:
self.best_result = result.value
self.best_guess = result.args[9]
How does it work: self.remaining guesses -= 1
“ ” if self.remaining_guesses ==
— “run()” launches all agents 58
self.done.set()
@agent
def producer(self):
while not self.done.is_set():
Make a new guess
self.queues.send_inputs(self.best guess,
method="task generator', topic='generate’)
Get the result, push new task to queue

E(C\II:) result = self.queues.get result(topic='generate’)

self.qgueues.send inputs(result.value,

What does our “active learning application” look like

- o o EEE o S O S B B O B EEE EEE EEE EEE S EEE S EEE B EEE N EEE B EEE B EEe BEm EEm BEm EEm BEm BEm Bam BEn BEm BEn BEm BEn BEm BEn Bam SEn BEm SEn BEm SEn Bam SEm Bmm e Bam e Eam e Eme e Eem

/ N

{ g‘jﬁLMolecule Queue|)
Thinker Record ':ll\ Model Library :
| |

I I

\ L_QC-Scorer QC-Recorder Trainer Updater ML-Scorer ML-Recorder ||
G Sl Rhtls Se St e S
Server Simulation QWChem) Training (TF,Torch) Inference (TF,Torch) :
___ 7/

EC)P =

\p—

What is the application behavior?

1. Start by running inference on all nodes.

$ 1000 - — -
wn 2. Run simulations on all nodes
--D-.. 800 = , —
© 3. After 8 complete, switch nodes to training models
Q
TS 600 -
O
g 400 - 4. After training, re-task available nodes to inference
< |
wn 5. After inference, reallocate all nodes back to simulation
@ 200 -
g 0 - | B -f'"1: _.‘, .-". J';i, 4", 4"1J 4"‘
0 1 2 3 4 5 6

Time (h)

12

Did the application have good scientific performance? [Yes]

1201 —— no-retrain 1

> 100 4 = random /—/_,—f—"'
1 g0 - update-8 "
o i :
— 60 — ! I’f
A 40 | ff'ﬂﬂ
= "1 A
Z 20 ! i
04 &

Found 10% more high-performing molecules with same allocation size

What made scaling hard?

Ward et al. MLHPC @ SC’21, Ward et al. HCW @ IPDPS’23 E\(\E\\;F‘ EBvRUTe

https://ieeexplore.ieee.org/abstract/document/9653177
https://ieeexplore.ieee.org/document/10196576

Let’s talk performance problems

O

@ 1000
(V)]

= 800
©

b

o 600
8 Startup costs, still working on it!*
— 400
<

O 200
S

@)

= 0

Time (h)

= K{E\\F’ e+ See Kamatar et al., eScience (2023)

https://ieeexplore.ieee.org/document/10254910

Let’s talk performance problems

O
@ 1000 -
(V)]
= 800 -
©
3
o 600 -
8 Are we using 400 nodes?
— 400 -
<
O 200 -
g A A
(@) ,
Z 0 - a o o o
0 1 2 3

=\
ELCP 22

16

Adding a “value store” as a secondary channel

Scaling is improved...

)
v ,
€ 10°{ -@ No Value Server »
;)’ 10t]| =€ Value Server '
© — lIdeal
- . m
Ll'ask Description g
2z ™~ ©
\/ \ > T S i F 38 3 T J S R T LU S e |
Q@ Request ' <3 Request P - 10° 10! 102 103
resu1 YAy feult c Node Count
) . 102
Q’hlnker Task Server) { Endpoint Worker) -® No Value Server

10! -~ Value Server

|Large Inputs/Outputs (Value Store) |

Mean Time (s)

L
10° ¥ N /
Data goes directly from Thinker to Worker 10-1] &= e e S
10° 10! 102 103

Node Count

by reducing task deploy time.

——_— .
h\p— ! e

ProxyStore: Data side channel with minimal code changes

Core Concept: A make a value store backed by filesystems, Redis, Globus, ...

store = RedisStore(name=‘redis-store’) # Make a store
p = store.proxy(my object) # Put the data in a store
assert isinstance(p, type(my_object)) # p is a lazy reference to the object

Automatic Proxying Manual Proxying
Just set a threshold in the queue Make your own proxies, use them in a function
queues = PipeQueues(proxy = store.proxy(inputs)
proxystore name=°‘redis-store’, self.queues.send inputs(proxy, method=‘f’)

proxystore_threshold=1000

Proxies can be re-used across tasks,

Colmena will automatically make proxies, but you manage their deletion

but they won't be reused

—_ ‘e 1] . .] |
ECP s That’s it. No changing your application code

ProxyStore is its own thing. Not part of Colmena

https://qithub.com/proxystore/proxystore

= README.md

ProxyStore
docs |passing | £ pre-commit.ci B30 () tests [passing|

Python Lazy Object Proxy Interface for Distributed Stores

Installation
Install via pip:

Base install

pip install proxystore

Extras install for serving Endpoints
pip install proxystore[endpoints]

More details are available on the Get Started guide. For local development, see the Contributing guide.

https://github.com/proxystore/proxystore

Let’s talk performance problems

Nodes Allocated/Used

=\
ELCP 22

1000

800

600

400

200

Training is too slow

20

Science Workflows Require Diverse Compute, Especially with Al

There’s some great hardware for training

r

.

CPU Nodes

~

v,

Images: ALCF, NVIDIA

g - O g

but it’s elsewhere

* Need open ports, or SSH tunnels

* Moving large data becomes a problem

r

.

GPU Nodes

~

v,

-

Globus Compute for Tasks, ProxyStore for Data funcx ey 510DUS

Compute
Task Nscrip(ior\'

I - =

~

Requast
Result

Few latencies are visible,

all small compared to task duration \Thinker _Task Server || Endpoint —W(jrker
[_'ﬂarge Inputs/Outputs (Value Store)
1. Startup for 2. Startup for N\ ProxyStore ¥ gt’)
training tasks = 3.8s Inference tasks = 3.8s glotus
20
10
4
20 5
2 Il Training BW Inference B Simulation '5'8
@ 8 § 8 ~ Parsl == FuncX+Globus
> O U == Parsl+Redis
8 4 z 0 1 1 1) 1
< 0 1 2 3 4 5 6
S ™ 3. Simulation = 100ms (median) Node Hours Expended (hr)
1500 1550 ‘rovo—zozo—zruc —oso——oeo—oa
Walltime (s) Science output is unaffected by convenience

\ EXRSCALE
E\(\g\'": PRORECT More details: Ward et al. HCW (2023)

https://doi.ieeecomputersociety.org/10.1109/IPDPSW59300.2023.00018

Let’s talk performance problems

Nodes Allocated/Used

=\
ELCP 22

1000

Tasks are too long

800

600

400

200

Time (h)

Solution 1: Other ECP projects making applications faster!

23

Breaking Pipelines into Pieces

lonization energy is multiple steps

Energy

A

Cation

>

Nuclear Configuration

Source: Hutchison, Chem StackExchage!

An intricate policy that needs Colmena

Queue

Selection

1

ooi Audit
List Eﬂﬂ Queue

Structure
Choices

Model Library |

P
\\ EXRSCALE
' COMPUTING
\ Y, PROJECT
I==

Selector

We can make better inferences after each step

Level: 0 - R?=0.838

Level: 1-R?=0.936 Level: 2 - R?=0.984

8 0 12 8 0 1 8 10 1
Predicted Predicted Predicted

Then run full-fidelity only on the best

100 4

50 -

0 -

— vertical
- acn-adiabatic _,_,...'—"’_F

~— acn-vertical

Z

0,00 005 0.10 015 020 0.25

Walltime (hr)

https://chemistry.stackexchange.com/a/89884

What are our latest
projects with Colmena?

Generating Materials for CO2 Storage

Generate Linkers: Diffusion Model
- Multi-GPU training for rapid updates

- Distribute generation across nodes

Assemble MOFs: CPU-bound

- Scattered across idle CPUs

Estimate Properties: ML, Cheap Physics

Compute Properties: Expensive Physics

_ Classical MD (LAMMPS), DFT (CP2K), ...

All at the same time

Generate
Linkers

Calculate
Properties

Mgi Database|

Train

i. |Mode1 Library
I

Assemble 3D
Structure

Surrogates gﬁﬁpriority Queue

M

Estimate
Properties

== Simulation Data Flow
=== AI Data Flow
|:| Data Stores

|:| Simulation Tasks

|:| AI Tasks

Work in progress: https://qgithub.com/globus-labs/mof-generation-at-scale

https://github.com/globus-labs/mof-generation-at-scale

Protein Design on with Genome-Scale Language Models

'] deepspeed Generation
Sequences (10°/hr) S
/
(20 Scoring and Folding
o Proteins (105hr)
25 \
Evaluating Stability
¢ ...: 3 Trajectories (10%/hr) i Y
n.' v A\ ’
Evaluating Activity -
Designed Proteins (10/hr) :é
. B 301 D
You guessed it, 25 -
all at the same time! £ ig
“ 101
0 A i
0 1 2 3 4 5

Time (hr)

r-:‘\\ e
ES\’; | =

Ref: Dharuman et al. SC-W'23

30

PMF (kJ/mol)
= = N N
B9 U 9

o

A/,
4.89 kJ/mol /

—0:2 0.0 0.2 0.4
Reaction Coordinates (A)

w
o
GC content

https://dl.acm.org/doi/abs/10.1145/3624062.3626087

Colmena is only
one option

Why Colmena” Sophisticated policies

Record <_I oo
Calcu_latoraaselec’clon
Queue

: Trajectory OOd Audit Selector
Trainer List E]ﬂ Queue

Sampler

W | Structure
& i Choices

I\ =
[0 Hninninm!
Model Library

ECP =

\p—

Why might you avoid Colmena?

« Extremely large task throughput. Best performance ~1000 decisions/second
— Typical time from “result received” to “submitted” ~1ms
— Possible™ with multiple task servers / thinkers, but not our main motivation

 Human-in-the-loop workflows. Consider things like Step Functions/Globus Automate instead
 Intra-worker coordination. Breaks our programming model. That’'s what Decaf/Ray/etc is for

« “Batteries included” for different domains (e.g., HPO). We're still on low-level problems

There are other programming models

libEnsemble: Two functions

Generators

E\(C\\P

e

Ray: Decentralized Steering

-

wplcd vm sodo

Jy
En\ Ru nnerGroup syn

def training_step(...):
DQN episodes = EnvRur

chluyBuHer add(episodes)

nerGroup.sample()

RoplayBuffor sample()
(s1nplod ep150de)

_weights(src=

{ EnvRunnerGroup ‘ ReplayBuffer LearnerGroup |

X \
n EnvRunners
m Learners

m.vector (

9y ‘_J RLModule
RLModuIe
(complola)

(inference-only) H
r

< Ioss
optim

.....

What does it all fit In?

Parsimony

<

Flexibility

>

DAG-based workflow systems

Ensemble Steering Systems Agent-based workflow systems

PROJECT

E\(\E\\)P Deachs There are other axes: Performance vs configuration, “batteries”

We each have a list of problems...
and should not intertwine solutions with workflow packages

My Wishlist: Solution outside Colmena*
1. Apps to respect GPU boundaries (v Added GPU pinning to Parsl
2. Communicating datasets is slow [V ProxyStore

3. Someone else to handle model versioning ? MLFlow?

4. Python takes too long to start ? ALCF’s Copper?

5. A mechanism to monitor/halt tasks ? Redis? + ...

6. To not care about which accelerator ? SYCL + Apptainer?
7. To never learn a new ML4Sci package ? Garden + §3?

E(E\P *| work on Colmena

Summary: Colmena is for deploying Al+Simulation HPC

Key points: New Data

« Al will play an increasing role in
controlling campaigns of simulations

- Successful exascale computational campaigns COI_mgnaJ‘

will require deploying Al on HPC New Tasks

e Colmena provides a Python library for building
applications to interleave simulation and Al workflows

* We need a broad collection of AI+HPC tools,
decoupled from individual workflow applicatons

See also: https://colmena.rtfd.io/ , https://github.com/exalearn/colmena

o
—_— e
EXRSCALE
\I COMPUTING
'..‘.\‘ ; PROJECT
A\ —

https://colmena.rtfd.io/
https://github.com/exalearn/colmena

	Slide 1: Steering Workflows with Artificial Intelligence
	Slide 2: “Computational Campaigns” are a common tool
	Slide 3: Expanding Computational Campaigns to the ExaScale
	Slide 4: Parallelism makes active learning on HPC difficult
	Slide 5: What kinds of application patterns exist?
	Slide 6: There's some nice work on this by Shantenu Jha’s team
	Slide 7: “Computational Campaigns” are a common tool
	Slide 8: Our Approach: Colmena
	Slide 9: What kind of “intelligence” goes into steering applications
	Slide 10: Building a Colmena app: Defining the “tasks” and “thinker”
	Slide 11: What does our “active learning application” look like
	Slide 12: What is the application behavior?
	Slide 13: Did the application have good scientific performance? [Yes]
	Slide 14: What made scaling hard?
	Slide 15: Let’s talk performance problems
	Slide 16: Let’s talk performance problems
	Slide 17: Adding a “value store” as a secondary channel
	Slide 18: ProxyStore: Data side channel with minimal code changes
	Slide 19: ProxyStore is its own thing. Not part of Colmena
	Slide 20: Let’s talk performance problems
	Slide 21: Science Workflows Require Diverse Compute, Especially with AI
	Slide 22: Globus Compute for Tasks, ProxyStore for Data
	Slide 23: Let’s talk performance problems
	Slide 24: Breaking Pipelines into Pieces
	Slide 25: What are our latest projects with Colmena?
	Slide 26: Generating Materials for CO2 Storage
	Slide 27: Protein Design on with Genome-Scale Language Models
	Slide 28: Colmena is only one option
	Slide 29: Why Colmena? Sophisticated policies
	Slide 30: Why might you avoid Colmena?
	Slide 31: There are other programming models
	Slide 32: What does it all fit in?
	Slide 33: We each have a list of problems… and should not intertwine solutions with workflow packages
	Slide 34: Summary: Colmena is for deploying AI+Simulation HPC

