
Cleared for public release

Steering Workflows with
Artificial Intelligence

Logan Ward
Computational Scientist
Data Science and Learning Division
Argonne National Laboratory

16 April 2025

2

“Computational Campaigns” are a common tool

Parameter Estimation

Digital Twins, Forecasting Learning Control Policies

ΩΛ ΩM σ8…

High-Throughput Design

How do we adapt
these approaches to

 Exascale computing?

3

Expanding Computational Campaigns to the ExaScale

Current

Knowledge

Improved

Knowledge

Generate

Tasks

Execute

Tasks

HPC

Current Model: Humans steer HPC, HPC performs simulations (Months-Years)

 Current Model Won't Scale. Humans are slow. Slow decisions, slow to learn

Generate

Tasks

Simulate

Tasks

Exascale HPC

Electrolytes

Water Clusters

Better Batteries

Better Science

Our goal: HPC steering itself (Days-Weeks)!

4

Parallelism makes active learning on HPC difficult

Root Problem: Sequential search is impractical, we must run >1 simulation at once

Consider a few parallel strategies…

Wait for N tasks to complete,
then pick next batch

Pick new tasks as soon
as one completes

Maintain a task queue

↑ Most information per decision
↓ Least utilization

↓ Least information per decision
↑ Greatest utilization

Bottom Line: Active learning on HPC requires intelligent policies

Today’s Talk:
- Show the broad scope of AI+HPC for Workflows
- Illustrate one way of building steered workflows

- Encourage a collective ecosystem

What kinds of
application patterns
exist?

6

There's some nice work on this by Shantenu Jha’s team

Read this! Brewer et al. arXiv/2406.14315

https://arxiv.org/abs/2406.14315

7

“Computational Campaigns” are a common tool

Parameter Estimation

Digital Twins, Forecasting Learning Control Policies

ΩΛ ΩM σ8…

High-Throughput Design

Our Approach: Colmena

Ward et al. MLHPC @ SC’21

https://ieeexplore.ieee.org/abstract/document/9653177

9

What kind of “intelligence” goes into steering applications

Observation: We have many policy ideas…

– Submit a new simulation once another completes

– Retrain a model after 8 successful computations

– Allocate more nodes to inference after models finish training

and others are possible.

Solution: We need a way of programming agents to encode such policies

1. Agents must be able to react to events

2. Allow the agent to hold state

3. Ability to re-allocate resources between pools

4. Separate agent from how to run tasks and interface with HPC

Event-triggered

Conditional logic

Resource management

10

Building a Colmena app: Defining the “tasks” and “thinker”

Key points:

1. Subclass the “BaseThinker” abstract class

2. Mark “agent” operations form the policy

3. Communicate with method server via queues

4. Communicate with other via Threading primitives

How does it work:

– “.run()” launches all agents

class Thinker(BaseThinker):

 def __init__(self, queue):

 super().__init__(queue)

 self.remaining_guesses = 10

 self.best_guess = None

 self.best_result = inf

 @result_processor(topic=‘simulate')

 def consumer(self, result):

 # Update the best result, check for termination

 if result.value < self.best_result:

 self.best_result = result.value

 self.best_guess = result.args[0]

 self.remaining_guesses -= 1

 if self.remaining_guesses == 0:

 self.done.set()

 @agent

 def producer(self):

 while not self.done.is_set():

 # Make a new guess

 self.queues.send_inputs(self.best_guess,

 method='task_generator', topic='generate’)

 # Get the result, push new task to queue

 result = self.queues.get_result(topic='generate’)

 self.queues.send_inputs(result.value,

 method='target_function', topic='simulate')

11

What does our “active learning application” look like

 le ule ueue

 e r

 imulati n em

 raining r n eren e r

 el i rar hinker

 ask

Server

12

What is the application behavior?

1. Start by running inference on all nodes.

2. Run simulations on all nodes

3. After 8 complete, switch nodes to training models

4. After training, re-task available nodes to inference

5. After inference, reallocate all nodes back to simulation

13

Did the application have good scientific performance? [Yes]

Found 10% more high-performing molecules with same allocation size

What made scaling hard?

Ward et al. MLHPC @ SC’21, Ward et al. HCW @ IPDPS’23

https://ieeexplore.ieee.org/abstract/document/9653177
https://ieeexplore.ieee.org/document/10196576

15

Let’s talk performance problems

Startup costs, still working on it!*

* See Kamatar et al., eScience (2023)

https://ieeexplore.ieee.org/document/10254910

16

Let’s talk performance problems

Are we using 400 nodes?

17

Adding a “value store” as a secondary channel

 px

 e uest

 esult

 hinker ask Server WorkerEndpoint

 e uest

 as es ri ti n

 arge n uts ut uts alue t re

 esult

Data goes directly from Thinker to Worker

Scaling is improved…

by reducing task deploy time.

18

ProxyStore: Data side channel with minimal code changes

Automatic Proxying

Just set a threshold in the queue

queues = PipeQueues(
 proxystore_name=‘redis-st re’
 proxystore_threshold=1000
)

Colmena will automatically make proxies,
but they won’t be reused

Manual Proxying

Make your own proxies, use them in a function

proxy = store.proxy(inputs)
self.queues.send_inputs(proxy met =‘ ’

Proxies can be re-used across tasks,
but you manage their deletion

Core Concept: A make a value store backed by filesystems, Redis, Globus, …

st re = e is t re name=‘re is-st re’ # a e a st re
 = st re. r x m _ je t # Put t e ata in a st re
assert isinstan e t e m _ je t # is a laz re eren e t t e je t

That’s it. No changing your application code!

19

ProxyStore is its own thing. Not part of Colmena

https://github.com/proxystore/proxystore

https://github.com/proxystore/proxystore

20

Let’s talk performance problems

Training is too slow

21

Science Workflows Require Diverse Compute, Especially with AI

There’s some great hardware for training but it’s elsewhere

Images: ALCF, NVIDIA

• Need open ports, or SSH tunnels

• Moving large data becomes a problem

Scheduler

File System

CPU Nodes GPU Nodes

Scheduler

File System

22

Globus Compute for Tasks, ProxyStore for Data Globus
Compute

1. Startup for
training tasks = 3.8s

2. Startup for
Inference tasks = 3.8s

3. Simulation = 100ms (median)

Few latencies are visible,
all small compared to task duration

Science output is unaffected by convenience

More details: Ward et al. HCW (2023)

https://doi.ieeecomputersociety.org/10.1109/IPDPSW59300.2023.00018

23

Let’s talk performance problems

Tasks are too long

Solution 1: Other ECP projects making applications faster!

24

Breaking Pipelines into Pieces

Source: Hutchison, Chem StackExchage!

Ionization energy is multiple steps
We can make better inferences after each step

Then run full-fidelity only on the best

 ele ti n
 ueue

 e r

 el i rar

 raje t r
 ist

 tru ture
 i es

 u it
 ueue

An intricate policy that needs Colmena

https://chemistry.stackexchange.com/a/89884

What are our latest
projects with Colmena?

26

Generating Materials for CO2 Storage

Generate Linkers: Diffusion Model

- Multi-GPU training for rapid updates

- Distribute generation across nodes

Assemble MOFs: CPU-bound

- Scattered across idle CPUs

Estimate Properties: ML, Cheap Physics

Compute Properties: Expensive Physics

- Classical MD (LAMMPS), DFT (CP2K), ...

All at the same time

Work in progress: https://github.com/globus-labs/mof-generation-at-scale

Simulation Data Flow

AI Data Flow

Data Stores

Simulation Tasks

 as s

Pri rit ueue

 el i rar

 ata ase

https://github.com/globus-labs/mof-generation-at-scale

27

Protein Design on with Genome-Scale Language Models

Ref: Dharuman et al. SC-W'23

You guessed it,
all at the same time!

https://dl.acm.org/doi/abs/10.1145/3624062.3626087

Colmena is only
one option

29

Why Colmena? Sophisticated policies

 ele ti n
 ueue

 e r

 el i rar

 raje t r
 ist

 tru ture
 i es

 u it
 ueue

30

Why might you avoid Colmena?

• Extremely large task throughput. Best performance ~1000 decisions/second

– ypical time from “result received” to “submitted” ~1ms

– Possible™️ with multiple task servers / thinkers, but not our main motivation

• Human-in-the-loop workflows. Consider things like Step Functions/Globus Automate instead

• Intra-worker coordination. Breaks our programming model. hat’s what Decaf/Ray/etc is for

• “Batteries included” for different domains (e.g., HPO). We’re still on low-level problems

31

There are other programming models

libEnsemble: Two functions Ray: Decentralized Steering

32

What does it all fit in?

There are other axes: Performance vs configuration, “batteries”

FlexibilityParsimony

SmartSim

Ray

Parsl

Balsam

SwiftT

Colmena

LibEnsemble

Agent-based workflow systems

Decaf

DAG-based workflow systems

Ensemble Steering Systems

DeepHyper

Supervisor

33

We each have a list of problems…
and should not intertwine solutions with workflow packages

My Wishlist: Solution outside Colmena*

1. Apps to respect GPU boundaries ✅ Added GPU pinning to Parsl

2. Communicating datasets is slow ✅ ProxyStore

3. Someone else to handle model versioning ❓ MLFlow?

4. Python takes too long to start ❓ ALCF’s Copper?

5. A mechanism to monitor/halt tasks ❓ Redis? + …

6. To not care about which accelerator ❓ SYCL + Apptainer?

7. To never learn a new ML4Sci package ❓ Garden + 🤗?

*I work on Colmena

34

Summary: Colmena is for deploying AI+Simulation HPC

Key points:

• AI will play an increasing role in
controlling campaigns of simulations

• Successful exascale computational campaigns
will require deploying AI on HPC

• Colmena provides a Python library for building
applications to interleave simulation and AI workflows

• We need a broad collection of AI+HPC tools,
decoupled from individual workflow applicatons

See also: https://colmena.rtfd.io/ , https://github.com/exalearn/colmena

Colmena

https://colmena.rtfd.io/
https://github.com/exalearn/colmena

	Slide 1: Steering Workflows with Artificial Intelligence
	Slide 2: “Computational Campaigns” are a common tool
	Slide 3: Expanding Computational Campaigns to the ExaScale
	Slide 4: Parallelism makes active learning on HPC difficult
	Slide 5: What kinds of application patterns exist?
	Slide 6: There's some nice work on this by Shantenu Jha’s team
	Slide 7: “Computational Campaigns” are a common tool
	Slide 8: Our Approach: Colmena
	Slide 9: What kind of “intelligence” goes into steering applications
	Slide 10: Building a Colmena app: Defining the “tasks” and “thinker”
	Slide 11: What does our “active learning application” look like
	Slide 12: What is the application behavior?
	Slide 13: Did the application have good scientific performance? [Yes]
	Slide 14: What made scaling hard?
	Slide 15: Let’s talk performance problems
	Slide 16: Let’s talk performance problems
	Slide 17: Adding a “value store” as a secondary channel
	Slide 18: ProxyStore: Data side channel with minimal code changes
	Slide 19: ProxyStore is its own thing. Not part of Colmena
	Slide 20: Let’s talk performance problems
	Slide 21: Science Workflows Require Diverse Compute, Especially with AI
	Slide 22: Globus Compute for Tasks, ProxyStore for Data
	Slide 23: Let’s talk performance problems
	Slide 24: Breaking Pipelines into Pieces
	Slide 25: What are our latest projects with Colmena?
	Slide 26: Generating Materials for CO2 Storage
	Slide 27: Protein Design on with Genome-Scale Language Models
	Slide 28: Colmena is only one option
	Slide 29: Why Colmena? Sophisticated policies
	Slide 30: Why might you avoid Colmena?
	Slide 31: There are other programming models
	Slide 32: What does it all fit in?
	Slide 33: We each have a list of problems… and should not intertwine solutions with workflow packages
	Slide 34: Summary: Colmena is for deploying AI+Simulation HPC

