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“Computational Campaigns” are a common tool

High-Throughput Design Parameter Estimation
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Expanding Computational Campaigns to the ExaScale

Current Model: Humans steer HPC, HPC performs simulations (Months-Years)

Current Model Won't Scale. Humans are slow. Slow decisions, slow to learn
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Our goal: HPC steering itself (Days-Weeks)!




Parallelism makes active learning on HPC difficult

Root Problem: Sequential search is impractical, we must run >1 simulation at once

Consider a few parallel strategies...
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R aall Bottom Line: Active learning on HPC requires intelligent policies

Today’s Talk:
- Show the broad scope of AI+HPC for Workflows

. - lllustrate one way of building steered workflows
Ed - Encourage a collective ecosystem




What kinds of
application patterns
exist?




There's some nice work on this by Shantenu Jha'’s team
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| Motif / Scope

| Interaction Patterns

| Coupling Patterns

| Example Use Case

Steering
Al improving HPC

- Control and data flow in
one direction: data from
HPC to Al control from Al
to HPC

- One Al to one or many
HPC

- Optionally human in the
loop

- Real-time requirements

- Dynamic composition with
HPC simulations spawned or
terminated on the fly

- Usually running in one fa-
cility

Al-oul-HPC

- Command-and-control of
physical experiments and
simulations (e.g. between
shots feedback for plasma
physics)

Multistage
Pipeline
Al improving HPC

- Data flows in one direction
from HPC to one or many
Al or HPC components

- Al filters control many
HP(C simulations

- Typically interaction done
without human in the loop

- Real-time requirements

- Dynamic composition with
branching in the workflow
based on filters

- Running in one facility

Al-in-HPC  and
HPC

- Large-scale MD simula-
tions using Al sampling
of a system with
degrees of freedom

Al-out-

many

Inverse
Design
Al improving HPC
HPC improving Al

- Control flow from Al to
HPC

- Multiple HPC simulations
and /or instruments sending
data to Al (one or many)

- Typically interaction done
without human in the loop

- Real-time is optional (Al
can use existing datasets)

- Execution can be conecur-
rent or asynchronous

- Running in one facility

Al-in-HPC
- Materials discovery to ad-
dress the problem of data
sparsity and reduce the
need for domain-specilic
knowledge

Digital Replica

Al improving HPC
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- Data/control flow in both

directions combining exper-

. o

Read this! Brewer et al. arxXiv/2406.14315

- Real-time requirements
with monitoring and visual-

Al-aboul-HPC'

- Digital twin of a [usion



https://arxiv.org/abs/2406.14315

“Computational Campaigns” are a common tool

High-Throughput Design Parameter Estimation

3, Stability

4. More focused
computational study

wwWednesday
09:00AM

5“:.{" p s -
Digital Twins, Forecasting Learning Control Policies

Target




Our Approach: Colmena

Ward et al. MLHPC @ SC’21 E\(\E\\; oscns



https://ieeexplore.ieee.org/abstract/document/9653177

What kind of “intelligence” goes into steering applications

Observation: We have many policy ideas...
— Submit a new simulation once another completes <
— Retrain a model after 8 successful computations Conditional logic

Event-triggered

— Allocate more nodes to inference after models finish training < Resource management

and others are possible.

Solution: We need a way of programming agents to encode such policies
Agents must be able to react to events

Allow the agent to hold state

Ability to re-allocate resources between pools

Separate agent from how to run tasks and interface with HPC

IR




Building a Colmena app: Defining the “tasks” and “thinker”

class Thinker(BaseThinker):
def _init_ (self, queue):
super().__init__ (queue)

self.remaining_guesses = 10

Key pOIntS: self.best_guess = None
1. Subclass the “BaseThinker” abstract class self.best_result = inf

Mark “agent” operations form the policy

result processor(topic=‘simulate’
_p p

2
3. Communicate with method server via gqueues def consumer(self, result):
. . . . s e # Update the best result, check for termination
4. Communicate with other via Threading primitives P 4
if result.value < self.best_result:
self.best_result = result.value
self.best_guess = result.args[9]
How does it work: self.remaining guesses -= 1
“ ” if self.remaining_guesses ==
— “run()” launches all agents 58
self.done.set()
@agent
def producer(self):
while not self.done.is_set():
# Make a new guess
self.queues.send_inputs(self.best guess,
method="task generator', topic='generate’)
# Get the result, push new task to queue

E(C\II:) result = self.queues.get result(topic='generate’)

self.qgueues.send inputs(result.value,




What does our “active learning application” look like
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What is the application behavior?

1. Start by running inference on all nodes.
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Did the application have good scientific performance? [Yes]
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Found 10% more high-performing molecules with same allocation size




What made scaling hard?

Ward et al. MLHPC @ SC’21, Ward et al. HCW @ IPDPS’23 E\(\E\\;F‘ EBvRUTe



https://ieeexplore.ieee.org/abstract/document/9653177
https://ieeexplore.ieee.org/document/10196576

Let’s talk performance problems
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https://ieeexplore.ieee.org/document/10254910

Let’s talk performance problems
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Adding a “value store” as a secondary channel

Scaling is improved...
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ProxyStore: Data side channel with minimal code changes

Core Concept: A make a value store backed by filesystems, Redis, Globus, ...

store = RedisStore(name=‘redis-store’) # Make a store
p = store.proxy(my object) # Put the data in a store
assert isinstance(p, type(my_object)) # p is a lazy reference to the object

Automatic Proxying Manual Proxying
Just set a threshold in the queue Make your own proxies, use them in a function
queues = PipeQueues( proxy = store.proxy(inputs)
proxystore name=°‘redis-store’, self.queues.send inputs(proxy, method=‘f’)

proxystore_threshold=1000

Proxies can be re-used across tasks,

Colmena will automatically make proxies, but you manage their deletion

but they won't be reused

—_ ‘e 1 ] . . ] |
ECP s That’s it. No changing your application code




ProxyStore is its own thing. Not part of Colmena

https://qithub.com/proxystore/proxystore

= README.md

ProxyStore
docs |passing | £ pre-commit.ci B30 () tests [passing|

Python Lazy Object Proxy Interface for Distributed Stores

Installation
Install via pip:

# Base install

pip install proxystore

# Extras install for serving Endpoints
pip install proxystore[endpoints]

More details are available on the Get Started guide. For local development, see the Contributing guide.



https://github.com/proxystore/proxystore

Let’s talk performance problems
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Science Workflows Require Diverse Compute, Especially with Al

There’s some great hardware for training

r

.

CPU Nodes

~

v,

Images: ALCF, NVIDIA

g - O g

but it’s elsewhere

* Need open ports, or SSH tunnels

* Moving large data becomes a problem
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Globus Compute for Tasks, ProxyStore for Data funcx ey 510DUS
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https://doi.ieeecomputersociety.org/10.1109/IPDPSW59300.2023.00018

Let’s talk performance problems
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Solution 1: Other ECP projects making applications faster!
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Breaking Pipelines into Pieces

lonization energy is multiple steps

Energy

A

Cation

>

Nuclear Configuration

Source: Hutchison, Chem StackExchage!

An intricate policy that needs Colmena
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We can make better inferences after each step
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https://chemistry.stackexchange.com/a/89884

What are our latest
projects with Colmena?




Generating Materials for CO2 Storage

Generate Linkers: Diffusion Model
- Multi-GPU training for rapid updates

- Distribute generation across nodes

Assemble MOFs: CPU-bound

- Scattered across idle CPUs

Estimate Properties: ML, Cheap Physics

Compute Properties: Expensive Physics

_ Classical MD (LAMMPS), DFT (CP2K), ...

All at the same time

Generate
Linkers

Calculate
Properties

Mgi Database|

Train

i. |Mode1 Library
I

Assemble 3D
Structure

Surrogates gﬁﬁpriority Queue

M

Estimate
Properties

== Simulation Data Flow
=== AI Data Flow
|:| Data Stores

|:| Simulation Tasks

|:| AI Tasks

Work in progress: https://qgithub.com/globus-labs/mof-generation-at-scale



https://github.com/globus-labs/mof-generation-at-scale

Protein Design on with Genome-Scale Language Models
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https://dl.acm.org/doi/abs/10.1145/3624062.3626087

Colmena is only
one option




Why Colmena” Sophisticated policies
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Why might you avoid Colmena?

« Extremely large task throughput. Best performance ~1000 decisions/second
— Typical time from “result received” to “submitted” ~1ms
— Possible™ with multiple task servers / thinkers, but not our main motivation

 Human-in-the-loop workflows. Consider things like Step Functions/Globus Automate instead
 Intra-worker coordination. Breaks our programming model. That’'s what Decaf/Ray/etc is for

« “Batteries included” for different domains (e.g., HPO). We're still on low-level problems




There are other programming models

libEnsemble: Two functions

Generators

E\(C\\P
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Ray: Decentralized Steering
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What does it all fit In?

Parsimony

<

Flexibility

>

DAG-based workflow systems

Ensemble Steering Systems Agent-based workflow systems

PROJECT

E\(\E\\)P Deachs There are other axes: Performance vs configuration, “batteries”




We each have a list of problems...
and should not intertwine solutions with workflow packages

My Wishlist: Solution outside Colmena*
1. Apps to respect GPU boundaries (v Added GPU pinning to Parsl
2. Communicating datasets is slow [V ProxyStore

3. Someone else to handle model versioning ?  MLFlow?

4. Python takes too long to start ? ALCF’s Copper?

5. A mechanism to monitor/halt tasks ? Redis? + ...

6. To not care about which accelerator ? SYCL + Apptainer?
7. To never learn a new ML4Sci package ? Garden + §3?

E(E\P *| work on Colmena




Summary: Colmena is for deploying Al+Simulation HPC

Key points: New Data

« Al will play an increasing role in
controlling campaigns of simulations

- Successful exascale computational campaigns COI_mgnaJ‘

will require deploying Al on HPC New Tasks

e Colmena provides a Python library for building
applications to interleave simulation and Al workflows

* We need a broad collection of AI+HPC tools,
decoupled from individual workflow applicatons

See also: https://colmena.rtfd.io/ , https://github.com/exalearn/colmena
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https://colmena.rtfd.io/
https://github.com/exalearn/colmena
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