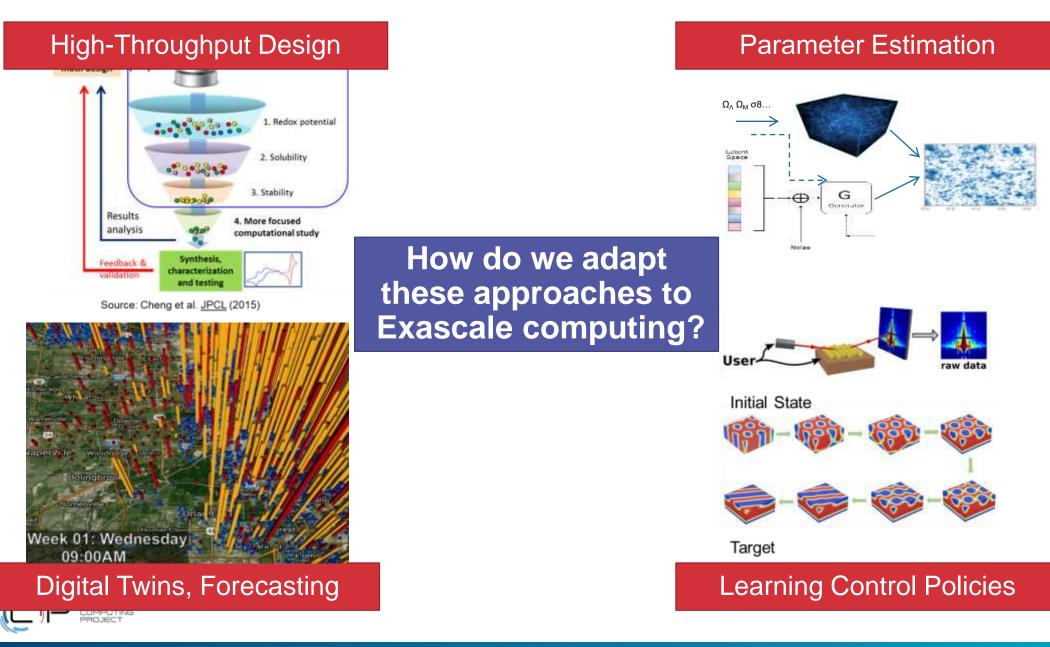
Steering Workflows with Artificial Intelligence

Cleared for public release

Logan Ward Computational Scientist Data Science and Learning Division Argonne National Laboratory

16 April 2025

"Computational Campaigns" are a common tool

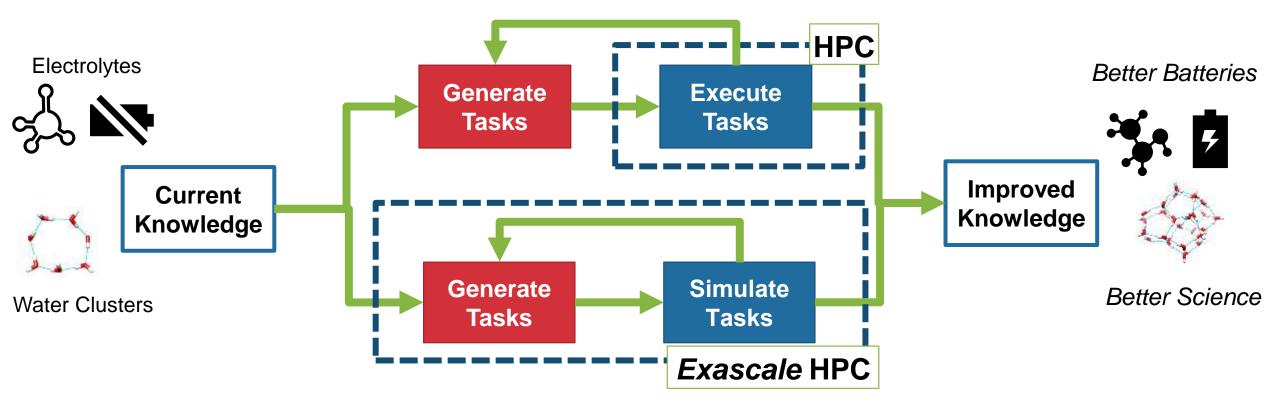


2

Expanding Computational Campaigns to the ExaScale

Current Model: Humans steer HPC, HPC performs simulations (Months-Years)

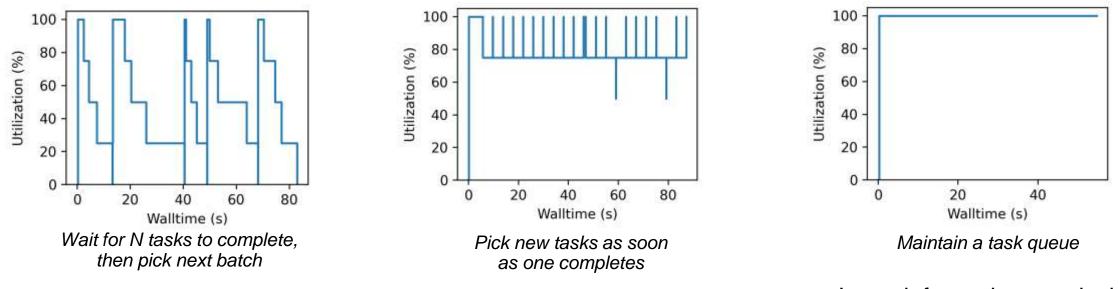
Current Model Won't Scale. Humans are slow. Slow decisions, slow to learn



Our goal: HPC steering itself (Days-Weeks)!

Parallelism makes active learning on HPC difficult

Root Problem: Sequential search is impractical, we must run >1 simulation at once



Consider a few parallel strategies...

↑ Most information per decision
Least utilization

E

Least information per decision
 Greatest utilization

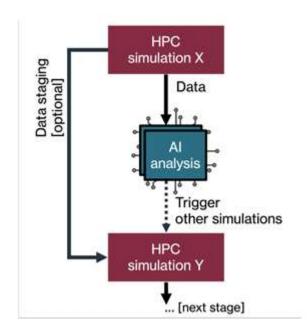
Bottom Line: Active learning on HPC requires intelligent policies

Today's Talk:

- Show the broad scope of AI+HPC for Workflows
- Illustrate one way of building steered workflows
 - Encourage a collective ecosystem

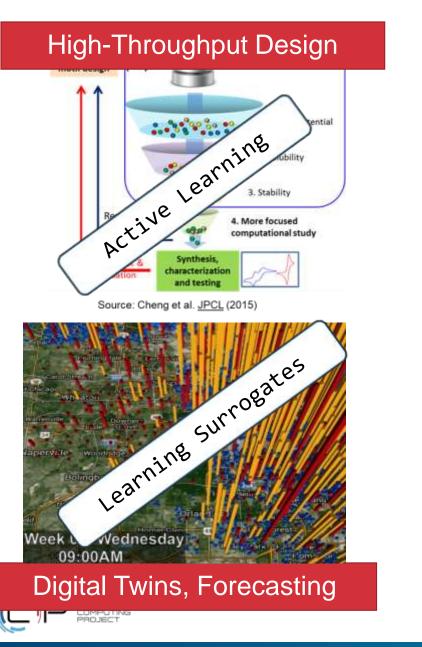
What kinds of application patterns exist?

There's some nice work on this by Shantenu Jha's team



Motif / Scope	Interaction Patterns	Coupling Patterns	Example Use Case
Steering AI improving HPC	 Control and data flow in one direction: data from HPC to AI, control from AI to HPC One AI to one or many HPC Optionally human in the loop 	 Real-time requirements Dynamic composition with HPC simulations spawned or terminated on the fly Usually running in one fa- cility 	AI-out-HPC - Command-and-control of physical experiments and simulations (e.g. between shots feedback for plasma physics)
Multistage Pipeline AI improving HPC	 Data flows in one direction from HPC to one or many AI or HPC components AI filters control many HPC simulations Typically interaction done without human in the loop 	 Real-time requirements Dynamic composition with branching in the workflow based on filters Running in one facility 	AI-in-HPC and AI-out- HPC - Large-scale MD simula- tions using AI sampling of a system with many degrees of freedom
Inverse Design AI improving HPC HPC improving AI	 Control flow from AI to HPC Multiple HPC simulations and/or instruments sending data to AI (one or many) Typically interaction done without human in the loop 	 Real-time is optional (AI can use existing datasets) Execution can be concurrent or asynchronous Running in one facility 	AI-in-HPC - Materials discovery to ad- dress the problem of data sparsity and reduce the need for domain-specific knowledge
Digital Replica AI improving HPC	- Data/control flow in both directions combining exper-	- Real-time requirements with monitoring and visual-	AI-about-HPC - Digital twin of a fusion

"Computational Campaigns" are a common tool



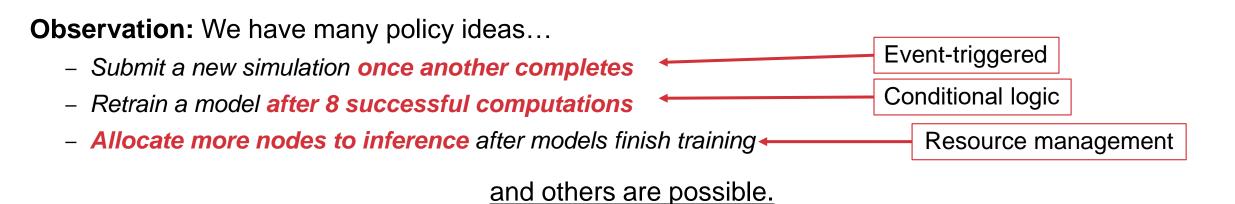
Parameter Estimation $\Omega_{\Lambda} \Omega_{M} \sigma 8...$ Generative AI Space Reinforcement Learning Target

Learning Control Policies

Our Approach: Colmena

Ward et al. MLHPC @ SC'21

What kind of "intelligence" goes into steering applications



Solution: We need a way of programming *agents* to encode such policies

- 1. Agents must be able to react to events
- 2. Allow the agent to hold state
- 3. Ability to re-allocate resources between pools
- 4. Separate agent from how to run tasks and interface with HPC

Building a Colmena app: Defining the "tasks" and "thinker"

Key points:

- 1. Subclass the "BaseThinker" abstract class
- 2. Mark "agent" operations form the policy
- 3. Communicate with method server via queues
- 4. Communicate with other via Threading primitives

How does it work:

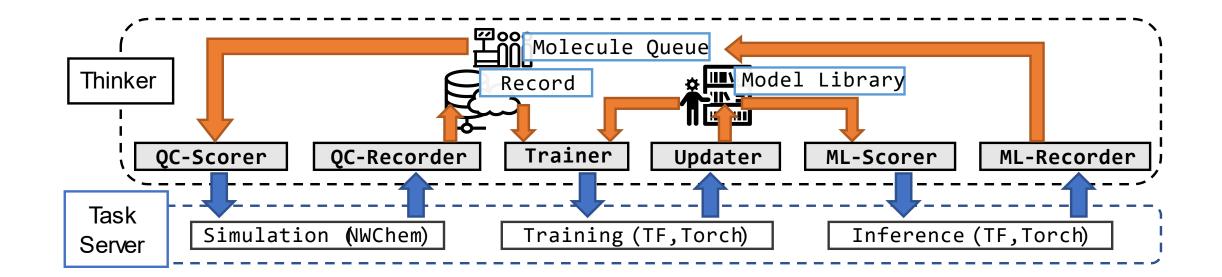
- ".run()" launches all agents


```
class Thinker(BaseThinker):
    def __init__(self, queue):
        super().__init__(queue)
        self.remaining_guesses = 10
        self.best_guess = None
        self.best result = inf
```

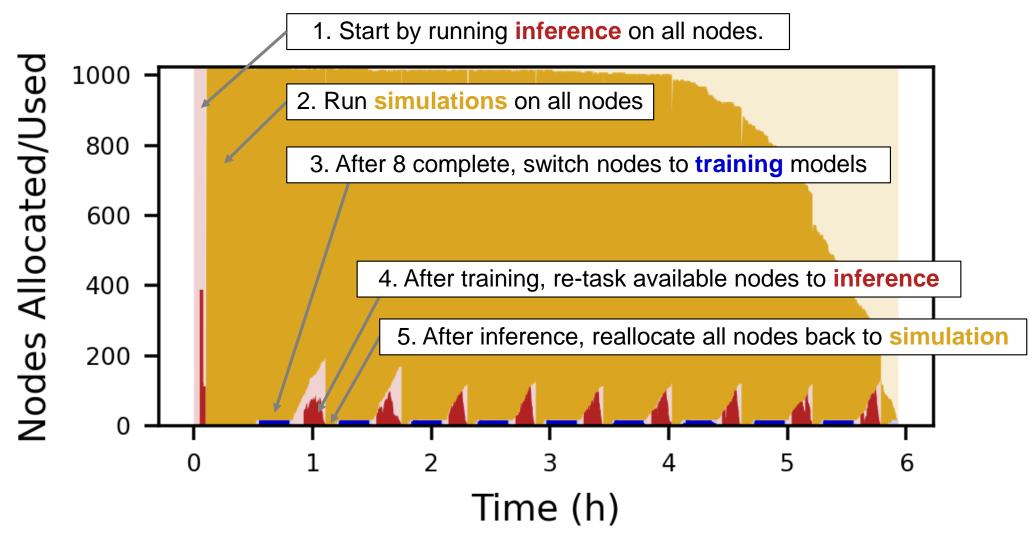
```
@result_processor(topic='simulate')
def consumer(self, result):
    # Update the best result, check for termination
    if result.value < self.best_result:
    self.best_result = result.value
    self.best_guess = result.args[0]
    self.remaining_guesses -= 1
    if self.remaining_guesses == 0:
    self.done.set()</pre>
```

```
@agent
def producer(self):
    while not self.done.is_set():
    # Make a new guess
        self.queues.send_inputs(self.best_guess,
            method='task_generator', topic='generate')
        # Get the result, push new task to queue
        result = self.queues.get_result(topic='generate')
        self.queues.send inputs(result.value,
```

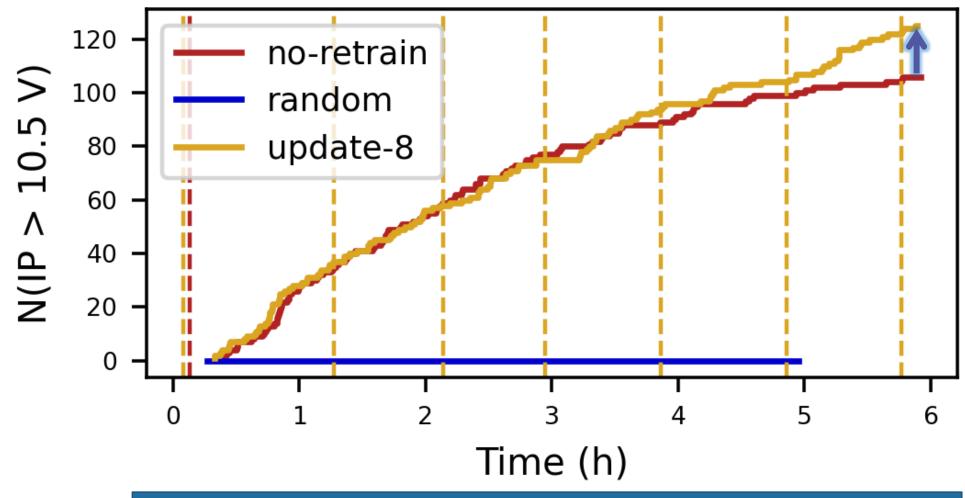
What does our "active learning application" look like



What is the application behavior?



Did the application have good scientific performance? [Yes]

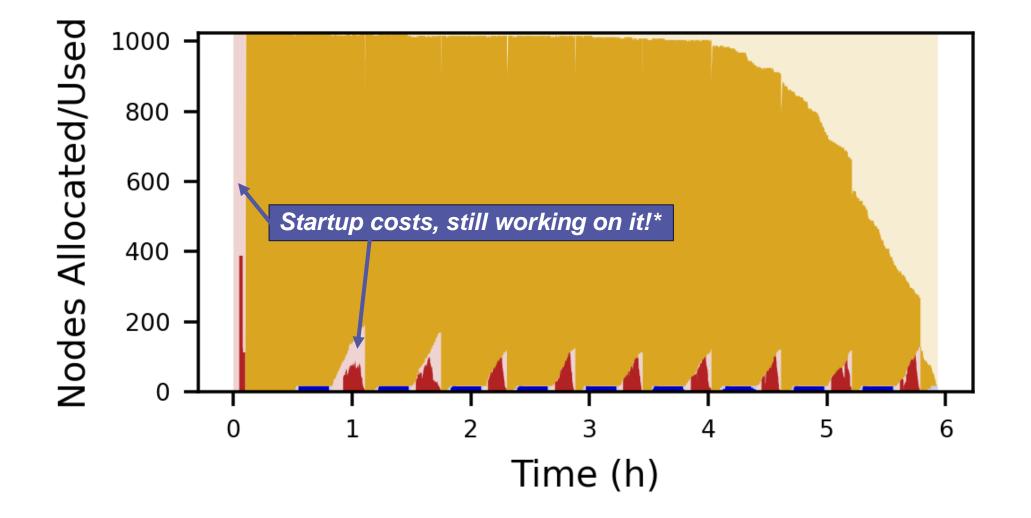


Found 10% more high-performing molecules with same allocation size

What made scaling hard?

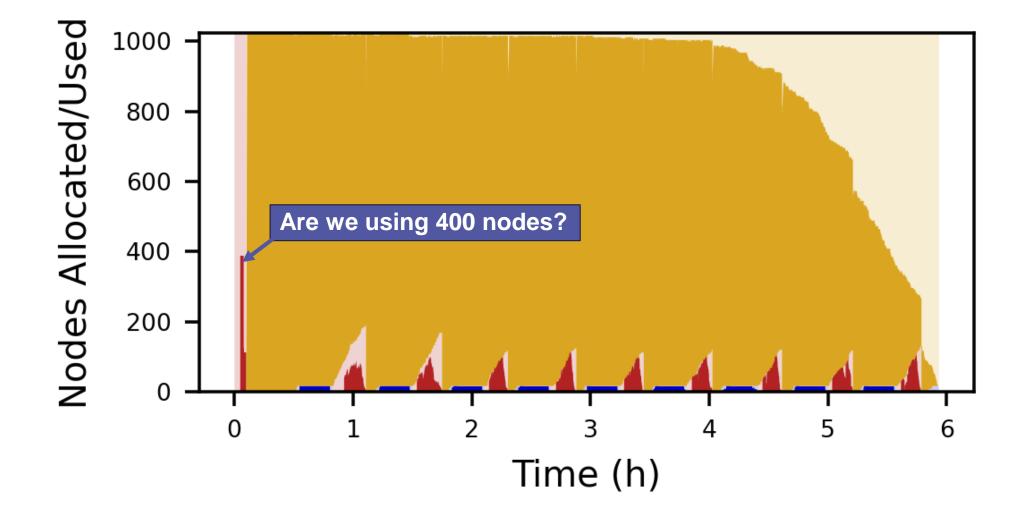
Ward et al. MLHPC @ SC'21, Ward et al. HCW @ IPDPS'23

Let's talk performance problems

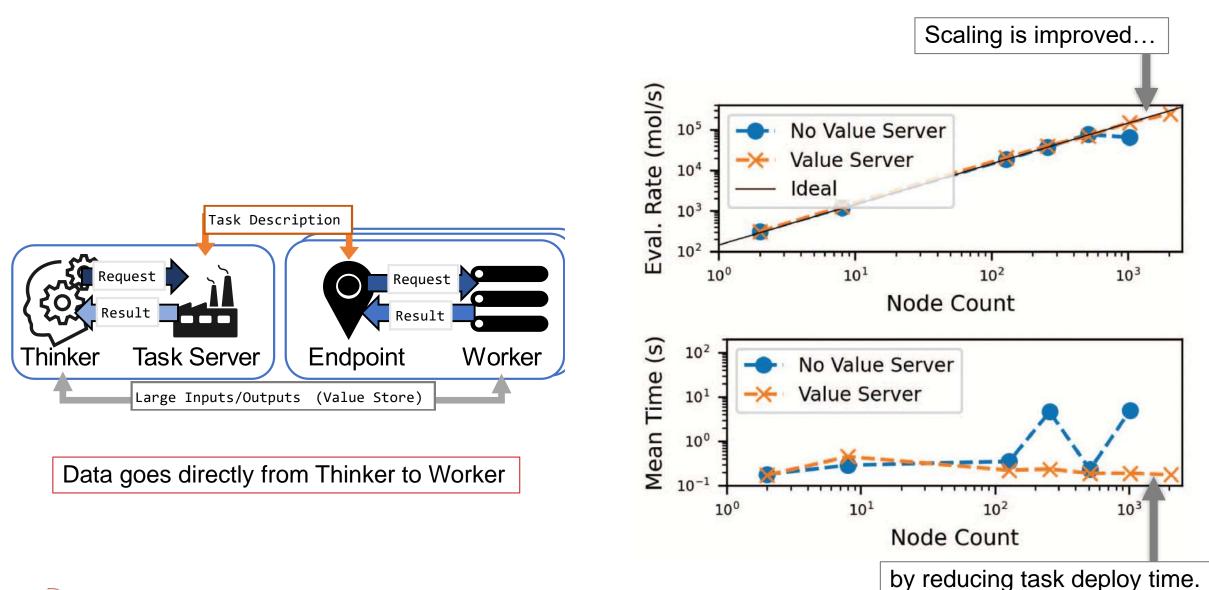


* See Kamatar et al., eScience (2023)

Let's talk performance problems



Adding a "value store" as a secondary channel



ProxyStore: Data side channel with minimal code changes

Core Concept: A make a value store backed by filesystems, Redis, Globus, ...

```
store = RedisStore(name='redis-store') # Make a store
p = store.proxy(my_object) # Put the data in a store
assert isinstance(p, type(my_object)) # p is a lazy reference to the object
```

Automatic Proxying

Just set a threshold in the queue

Manual Proxying

Make your own proxies, use them in a function

```
queues = PipeQueues(
    proxystore_name='redis-store',
    proxystore_threshold=1000
)
```

Colmena will automatically make proxies, but they won't be reused

```
proxy = store.proxy(inputs)
self.queues.send_inputs(proxy, method='f')
```

Proxies can be re-used across tasks, but you manage their deletion

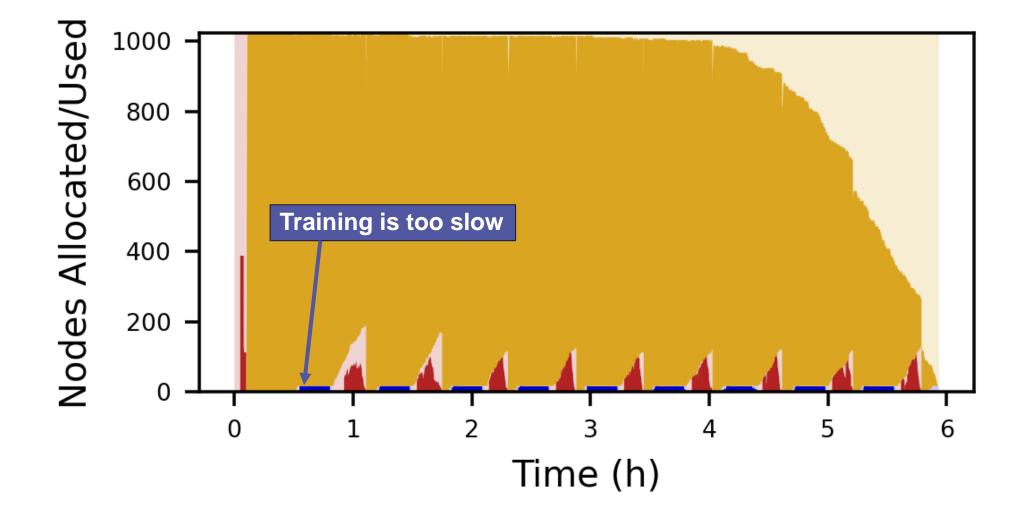
18

ProxyStore is its own thing. Not part of Colmena

https://github.com/proxystore/proxystore

Ξ README.md	Ø
ProxyStore	
docs passing I pre-commit.ci passed I tests passing	
Python Lazy Object Proxy Interface for Distributed Stores	
Installation	
Install via pip:	
<pre># Base install pip install proxystore # Extras install for serving Endpoints pip install proxystore[endpoints]</pre>	
More details are available on the Get Started guide. For local development, see the Contributing guide.	

Let's talk performance problems

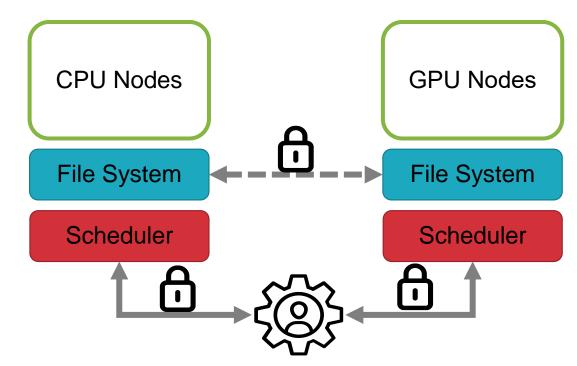


Science Workflows Require Diverse Compute, Especially with AI

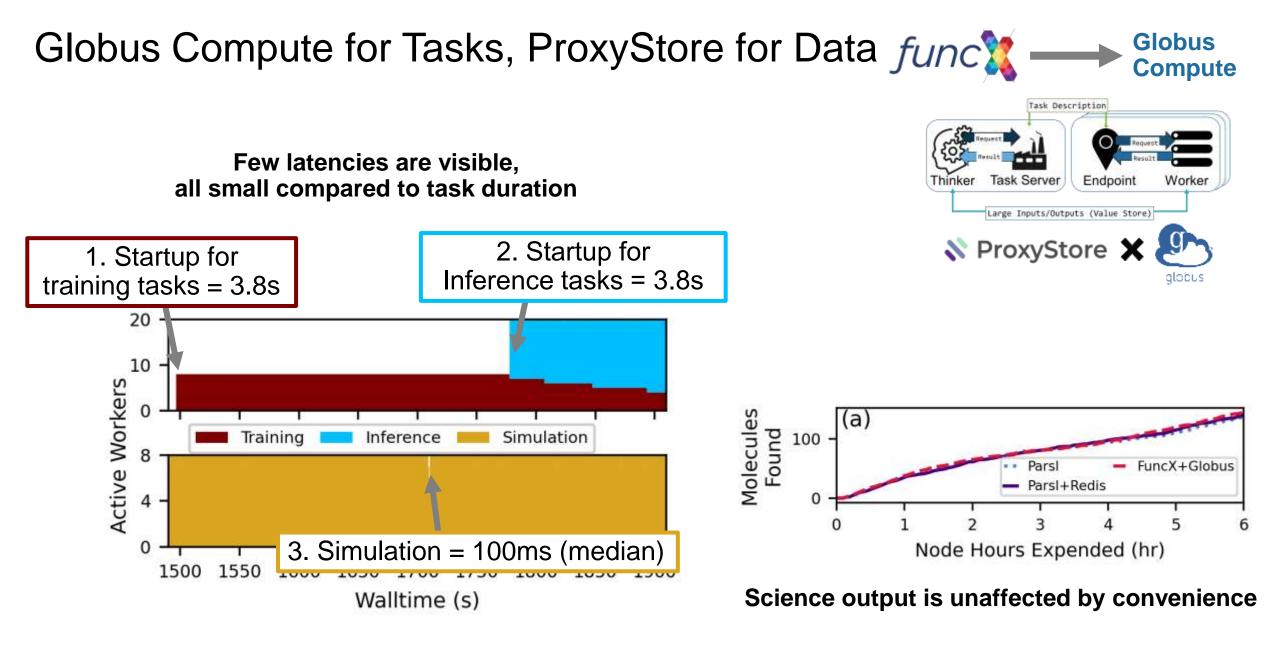
There's some great hardware for training

but it's elsewhere

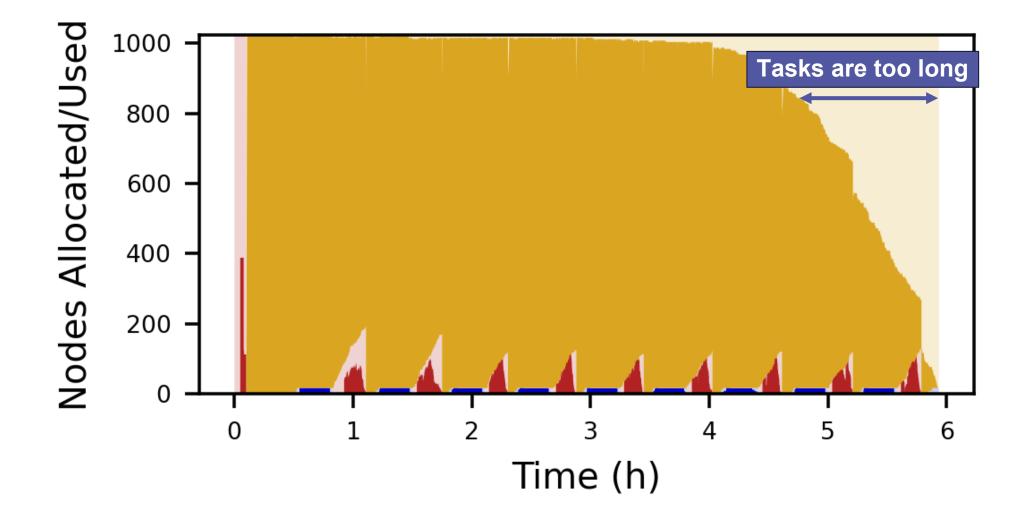
- Need open ports, or SSH tunnels
- Moving large data becomes a problem



Images: ALCF, NVIDIA



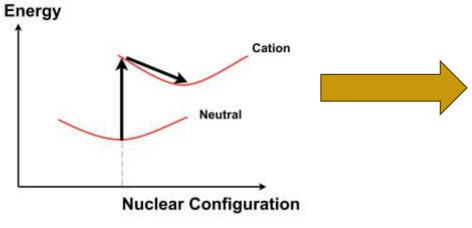
Let's talk performance problems



Solution 1: Other ECP projects making applications faster!

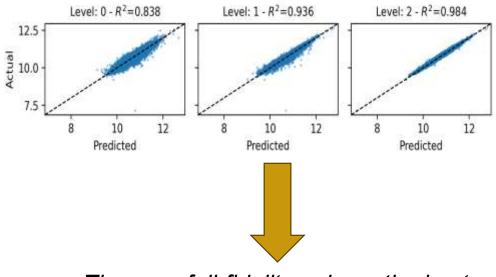
Breaking Pipelines into Pieces

Ionization energy is multiple steps

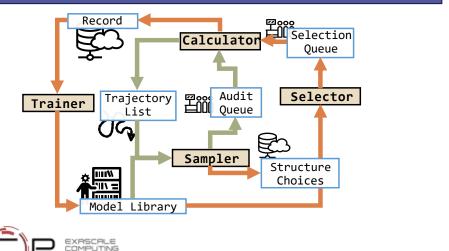


Source: Hutchison, Chem StackExchage!

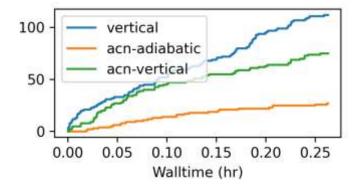
We can make better inferences after each step



An intricate policy that needs Colmena



Then run full-fidelity only on the best



What are our latest projects with Colmena?

Generating Materials for CO2 Storage

Generate Linkers: Diffusion Model

- Multi-GPU training for rapid updates
- Distribute generation across nodes

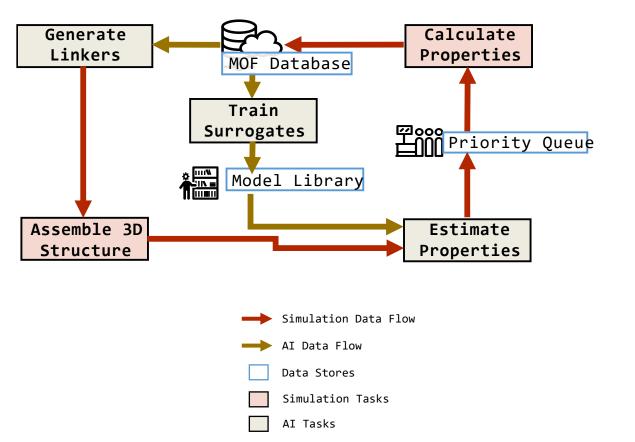
Assemble MOFs: CPU-bound

- Scattered across idle CPUs

Estimate Properties: ML, Cheap Physics

Compute Properties: Expensive Physics

- Classical MD (LAMMPS), DFT (CP2K), ...

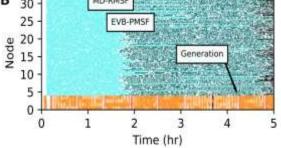


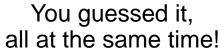
All at the same time

Work in progress: https://github.com/globus-labs/mof-generation-at-scale

Protein Design on with Genome-Scale Language Models

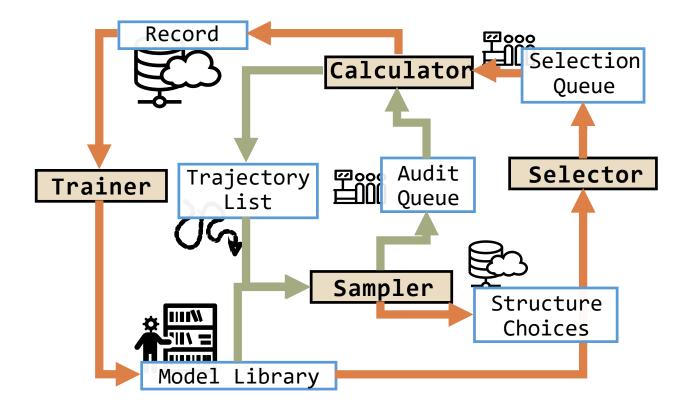






Colmena is only one option

Why Colmena? <u>Sophisticated policies</u>



Why might you avoid Colmena?

- Extremely large task throughput. Best performance ~1000 decisions/second
 - Typical time from "result received" to "submitted" ~1ms
 - Possible[™] with multiple task servers / thinkers, but not our main motivation

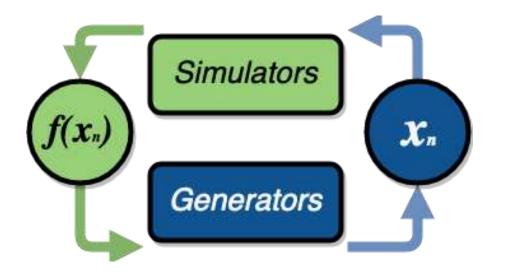
• Human-in-the-loop workflows. Consider things like Step Functions/Globus Automate instead

• Intra-worker coordination. Breaks our programming model. That's what Decaf/Ray/etc is for

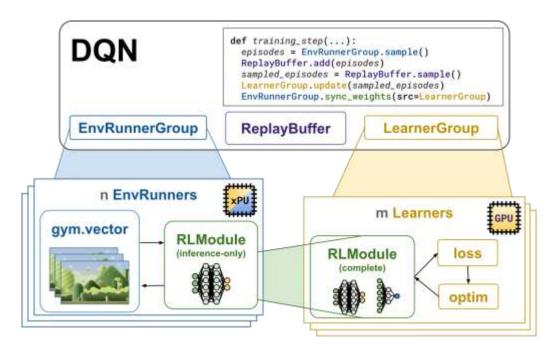
• "Batteries included" for different domains (e.g., HPO). We're still on low-level problems

There are other programming models

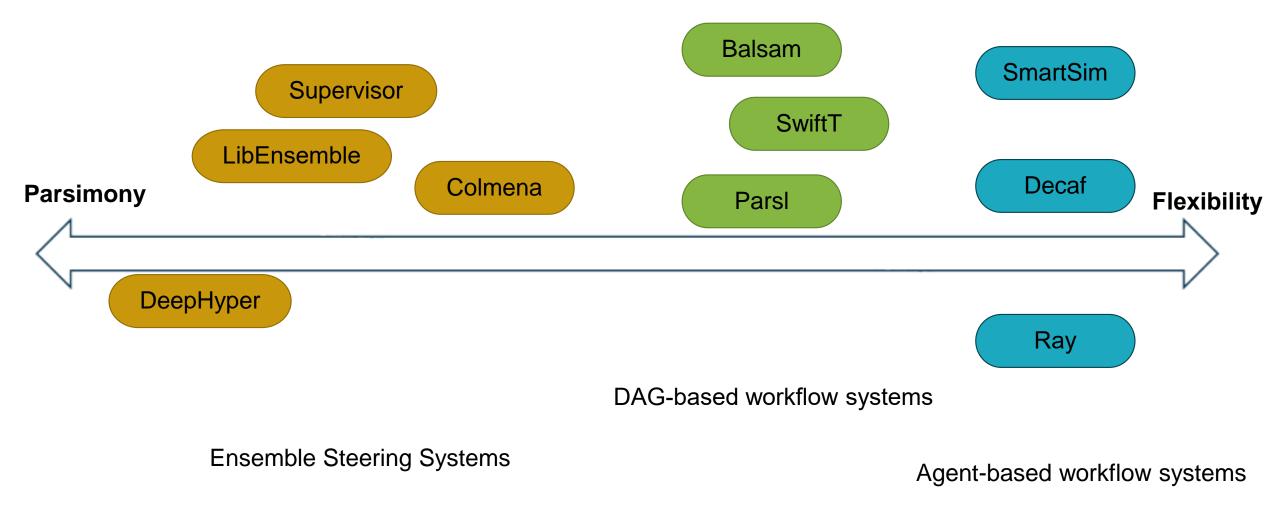
libEnsemble: Two functions



Ray: Decentralized Steering



What does it all fit in?



There are other axes: Performance vs configuration, "batteries"

We each have a list of problems... and should not intertwine solutions with workflow packages

My Wishlist:

- 1. Apps to respect GPU boundaries \checkmark
- 2. Communicating datasets is slow 🗸
- 3. Someone else to handle model versioning ?
- 4. Python takes too long to start ?
- 5. A mechanism to monitor/halt tasks ?
- 6. To not care about which accelerator ?
- 7. To never learn a new ML4Sci package ?

Solution outside Colmena*
Added GPU pinning to Parsl
ProxyStore
MLFlow?
ALCF's Copper?
Redis? +
SYCL + Apptainer?
Garden + 😜?

Summary: Colmena is for deploying AI+Simulation HPC

Key points:

- Al will play an increasing role in controlling campaigns of simulations
- Successful exascale computational campaigns will require **deploying AI on HPC**
- **Colmena** provides a Python library for building applications to interleave simulation and AI workflows
- We need a **broad collection of AI+HPC tools**, decoupled from individual workflow applicatons

See also: https://colmena.rtfd.io/, https://github.com/exalearn/colmena

