

One workflow to rule them all: introducing DAGonStar, yet another workflow engine for Python developers, designed for HPC and Al.

Prof. Raffaele Montella
University of Naples "Parthenope"

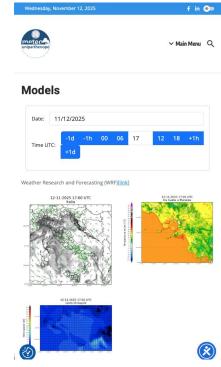
Introduction and motivation

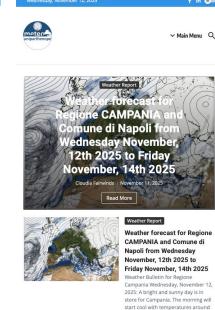
Running unattended scientific workflow applications

- Routinary: running each time initial data are available
- On demand: footprint for external software components execution.
- Orchestrating: external software (diverse and different, producing and consuming large files -- or group of files).
- Failsafe: failure have not to be an issue: even partially produced outputs have to be enough to continue the production.
- Replicability, reproducibility, reusability, FAIRness: not just buzzword, but rocksolid cornerstones.

• **Co-design:** from the application requirements to the middleware features and vice versa.

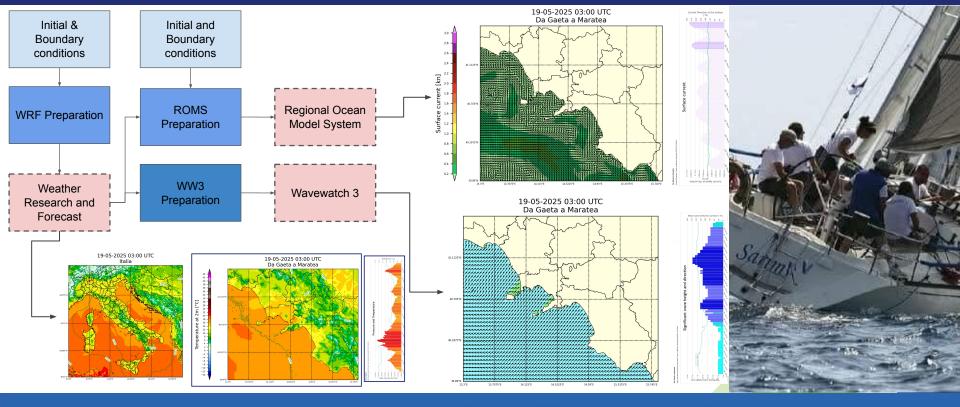
meteo@uniparthenope


http://meteo.uniparthenope.it



f in 🐵

11°C, gradually warming to a p...

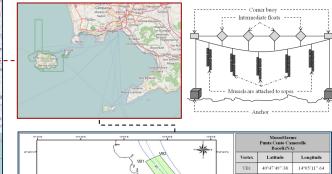

Read More Weather Report

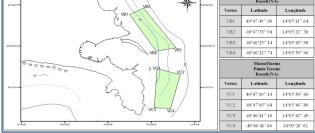
Cloudia Fairwinds | November 11, 2025

meteo@uniparthenope

http://meteo.uniparthenope.it

Predicting bacteria contamination in farmed mussels


Mussels farming is an outstanding business cornerstone in the most part of Italian coastal regions.


MARKET

- Companies: 263(d)/886(r)
- Tons: ~64235 (% EU prod ISPRA)
- Euro/Kg: ~1.75 (average)
- ~112M€ (2013, Italy)

Making <u>predictions</u> about the <u>pollutant</u> concentration in mussel farms areas in order to limit human diseases.

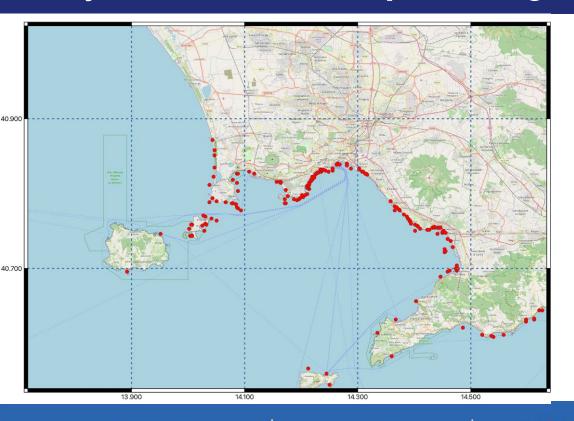


Predicting bacteria contamination in farmed mussels

• Use case: Campania – Italy, *Mytilus galloprovincialis*

Farming banks types: Artificial, Natural

Microbiological	Escherichia coli					
Microbiological	Salmonella					
Chemical	Mercury					
Chemical	Lead					



Study domain: the Campania Region, South of Italy

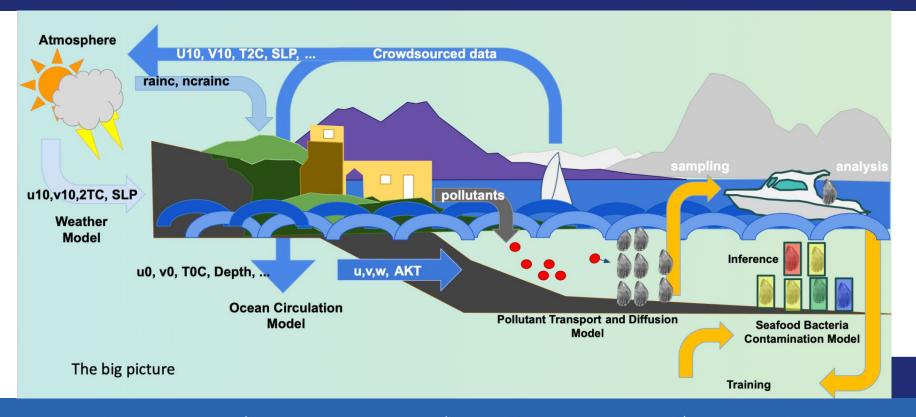
Faecal contamination may arise from a variety of sources:

- Sewage discharges (continuous or discontinuous)
- Farmed animals
- Wildlife shipping.

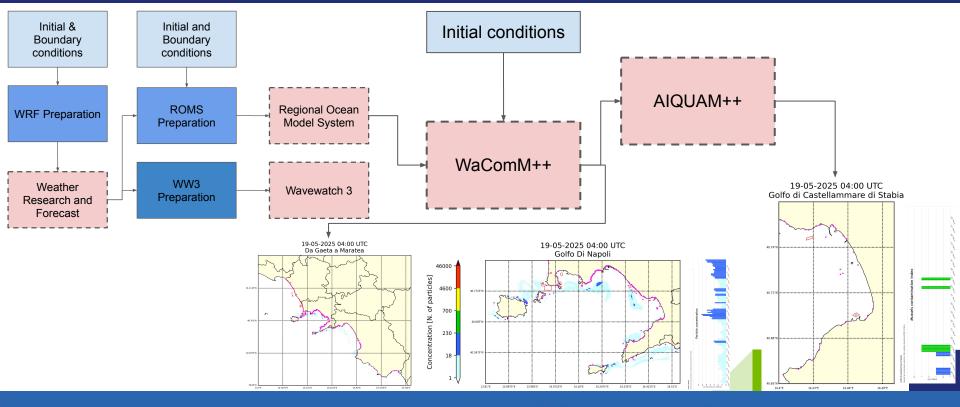
Transported and diffused by sea currents.

Challenges:

High-resolution weather forecasts Accurate bathymetric model High-resolution numerical model Initial conditions.

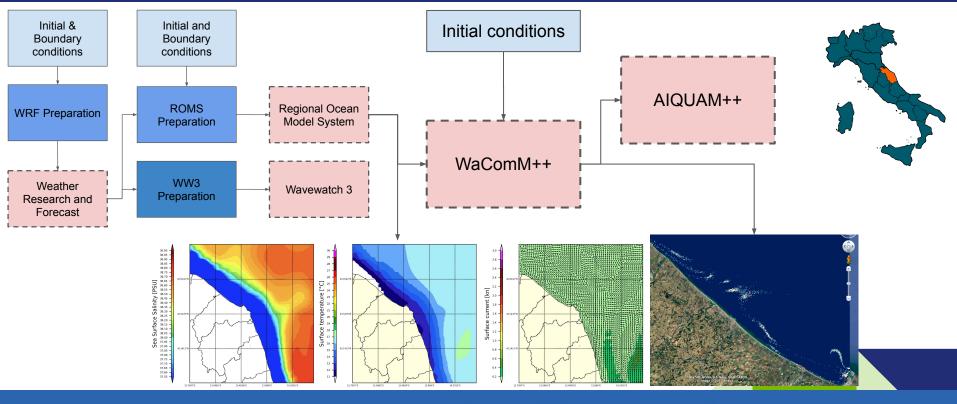


The big picture



MytilEx

https://meteo.uniparthenope.it/mytilex/

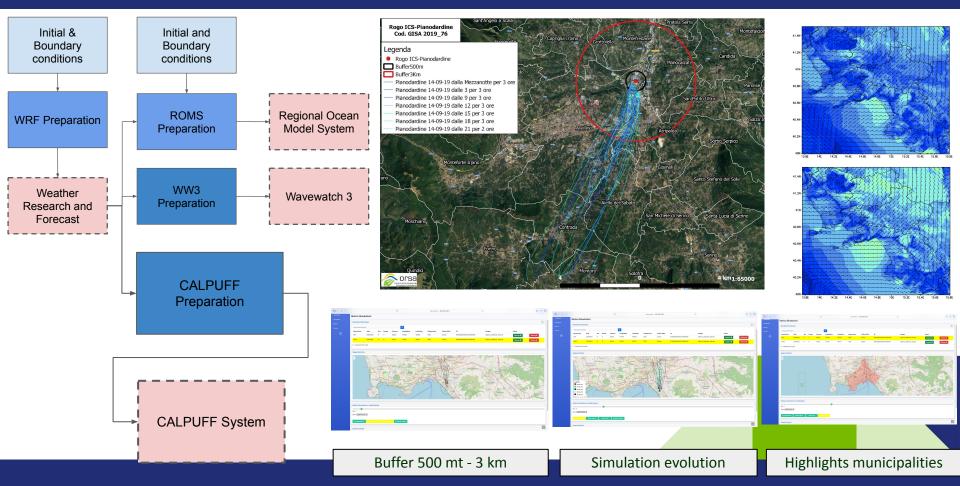


MytilX (on demand)

SmokeTracer (on demand)

https://smoketracer.uniparthenope.it/

A numerical model-based on demand workflow HPC application to forecast the smoke plume pattern during a wildfire



SmokeTracer (on demand)

Let me to introduce the hero of the day...

Direct Acyclic Graphs as parallel jobs on anything

DAGonStar is a production-oriented workflow engine:

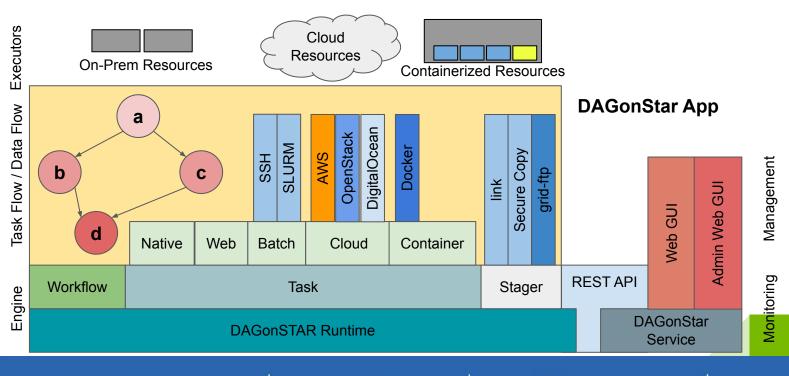
- **Integrated** in the Python environment.
- **Minimal** footprint for external software components execution.
- Avoiding any workflow engine centered data management.
- Checkpoints for failover and execution recovery.

- Straightforward definition of tasks:
 - o Python scripts.
 - Web interaction.
 - External software components.
- Execution sites independence:
 - Local / scheduler (SLURM).
 - Containers (Docker).
 - Clouds (AWS, OpenStack, DigitalOcean).

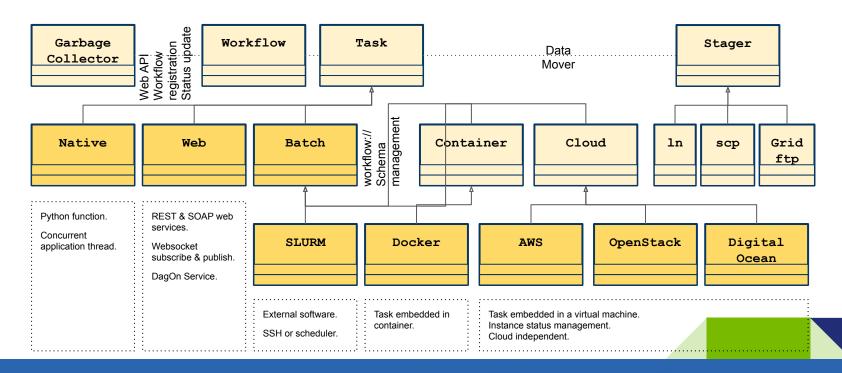
Named after the Phoenician god-fish *Dagon* known by ancient Greeks as *Triton*.

NB: The Star (*) symbol is the wildcard for anything.

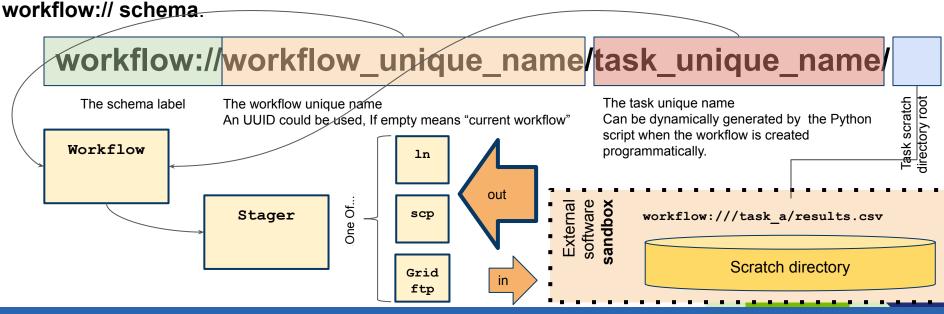
https://github.com/dagonstar/



Architecture



Components



workflow:// schema

The **Batch** component takes charge of the management of data dependencies using the

- Tracks the storage and computational resources allocated during tasks execution.
- Proceeds to dispose them when no longer needed.

For each batch task in the <workflow> ...

For each workflow://<workflow>/<task>/ reference in the task command line ...

Increment the number of reference to <task>

For each workflow://<workflow>/<task>/ reference in the task $command\ line\ \dots$

Decrement the number of reference to <task>

If the number of reference to <task> is 0, clean up the involved resource

Local, remote or shared file system:

Remove the scratch directory.

Make Dependencies

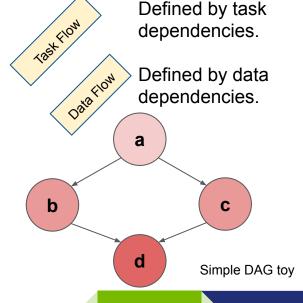
On Task Finish

Virtual machine instance:

Stop the instance.

Container:

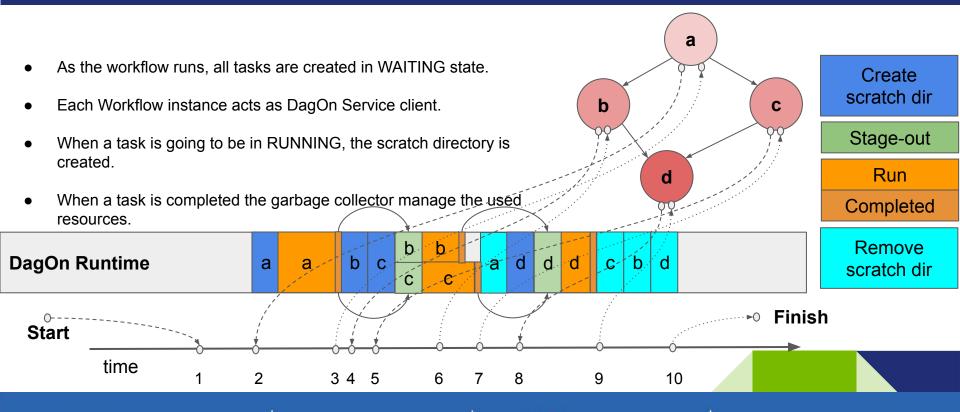
Stop the container.


Programming Model

Python Script: "DAGonStar Hello World App"

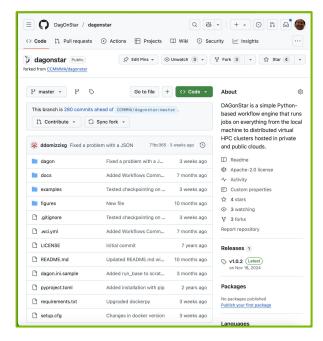
```
import dagon
...
workflow=Workflow("myapp",settings)
workflow.add_task(new Task("a","..."))
workflow.add_task(new Task("b","workflow:///a"))
workflow.add_task(new Task("c","workflow:///a"))
workflow.add_task(new Task("d","workflow:///b workflow:///c"))
workflow.run()
sys.exit(0)
```

- Dealing with actual data files instead of high-level defined datasets.
- Performing backward data references in order to create dependencies.
- Having more Workflow instances in the same Python application.



Application Lifecycle

It's tutorial time!



Docs and tutorials

How to install

git clone https://github.com/DagOnStar/dagonstar.git
cd dagonstar
python3 -m venv venv
. venv/bin/activate
pip install -r requirements.txt

Demo

cp dagon.ini.sample examples/dagon.ini
cd examples/dataflow/batch
python dataflow-demo.py

export PYTHONPATH=\$PWD:\$PYTHONPATH

https://github.com/dagonstar

dataflow-demo.py (1/3)


```
from dagon import Workflow
from dagon.task import DagonTask, TaskType

# Check if this is the main
if __name__ == '__main__':
    # Create the orchestration workflow
    workflow=Workflow("DataFlow-Demo")

# The task a
```

The task a
taskA = DagonTask(TaskType.BATCH, "A", "mkdir output; hostname > output/f1.txt")

https://github.com/DagOnStar/dagonstar/tree/master/examples/dataflow/batch

dataflow-demo.py (2/3)


```
# The task b
taskB = DagonTask(TaskType.BATCH, "B", "echo $RANDOM > f2.txt; cat
workflow:///A/output/f1.txt >> f2.txt")

# The task c
taskC = DagonTask(TaskType.BATCH, "C", "echo $RANDOM > f2.txt; cat
workflow:///A/output/f1.txt >> f2.txt")

# The task d
```

taskD = DagonTask(TaskType.BATCH, "D", "cat workflow:///B/f2.txt >> f3.txt; cat

https://github.com/DagOnStar/dagonstar/tree/master/examples/dataflow/batch

workflow:///C/f2.txt >> f3.txt")


dataflow-demo.py (3/3)


```
# add tasks to the workflow
workflow.add_task(taskA)
workflow.add_task(taskB)
workflow.add_task(taskC)
workflow.add_task(taskD)

workflow.make_dependencies()

# run the workflow
workflow.run()
```


https://github.com/DagOnStar/dagonstar/tree/master/examples/dataflow/batch

Tasks as Docker containers ...made easy...

dataflow-demo-docker-remote.py


```
from dagon import Workflow
from dagon.task import DagonTask, TaskType
                                               DOCKER
# Check if this is the main
                                               APPTAINER
if name == ' main ':
                                               KUBERNETES
     # Create the orchestration workflow
    workflow=Workflow("DataFlow-Demo")
    # The task a
    taskA = DagonTask(TaskType.DOCKER, "A", "mkdir output; hostname > output/f1.txt",
image="ubuntu:latest", ip="", ssh username="")
```

https://github.com/DagOnStar/dagonstar/blob/master/examples/dataflow/docker

dataflow-demo-docker-remote.py

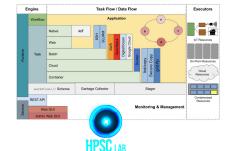

```
# The task b
  taskB = DagonTask(TaskType.APPTAINER, "B", "echo $RANDOM > f2.txt; cat
workflow:///A/output/f1.txt >> f2.txt", image="ubuntu:latest", ip="", ssh_username="")

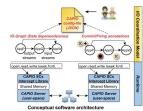
# The task c
  taskC = DagonTask(TaskType.KUBERNETES, "C", "echo $RANDOM > f2.txt; cat
workflow:///A/output/f1.txt >> f2.txt", image="ubuntu:latest", ip="", ssh_username="")

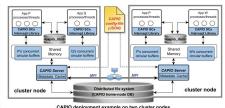
# The task d
  taskD = DagonTask(TaskType.DOCKER, "D", "cat workflow:///B/f2.txt >> f3.txt; cat
workflow:///C/f2.txt >> f3.txt", image="ubuntu:latest", ip="", ssh_username="")
```

https://github.com/DagOnStar/dagonstar/blob/master/examples/dataflow/docker

The extended universe

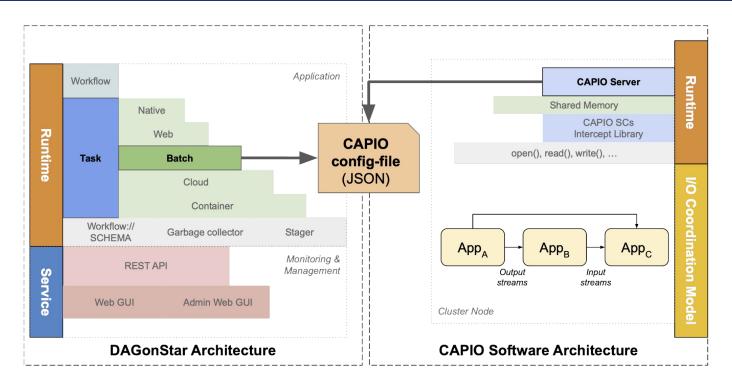





DAGonStar

- DAGonStar batch tasks generate the JSON file based on the dependencies between tasks, identified thanks to the workflow:// Schema;
- The JSON file is used by the CAPIO server for configuration;
- Tasks make up a pipeline in which one produces files and the other reads them;
- Posix calls made on these output files will be intercepted by the CAPIO server, allowing it to process this data in RAM.

Partners



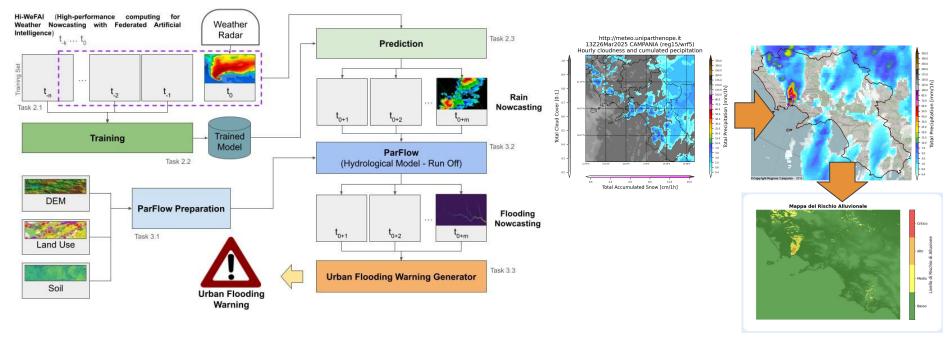
DAGonStar and CAPIO integration

DAGonStar and CAPIO integration

AGonStar

DAGonCAPIO

Application														
WRF														
Publish												×		
Time	0	3	6	9	12	15	18	21	24	27	30	33	36	39
Application														
WRF		\								_				
Publish		¥	A	¥	X	¥	X	¥	X	×	X	×		
Time	0	3	6	9	12	15	18	21	24	27	30	33	36	39



https://hiwefai-project.org

HPC-based application for Weather nowcasting with Federated Al

https://qlowpp-project.org

Refactoring, Optimization, and "Production-level" of GLOBO model developed by 'ISAC-CNR as an evolution of BOLAM (BOlogna Limited-Area Model).

Performance enhancement CPU

Collective MPI Communication I/O

Dynamics

Physics

I/O

Domain Decomposition

MPI_Bcast

MPI_Scatterv

Physics

I/O

Domain Decomposition

MPI_rective

MPI_Bcast

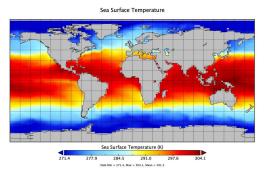
MPI_Scatterv

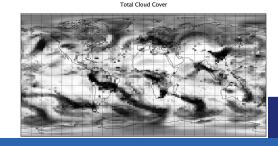
Physics

Application I/O

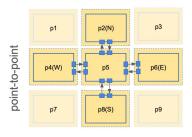
Domain Decomposition

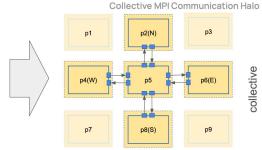
MPI_rective


Application I/O


Domain Decomposition

MPI_rective


MPI_Scatterv


https://glowpp-project.org

Performance enhancement CPU

Time to wrap up

Contributors

DAGonStar is open-source and open to the workflow community

Prof. José Luis Gonzalez Compean

Dr. Dante D. Sánchez Gallegos Prof. Javier Garcia Blas

Prof. Iacopo Colonnelli Marco Santimaria

Conclusion...

...and future directions:

- Develop DAGonStar for HPC+Al environmental applications
- Make DAGonFS as stable and reliable ad-hoc file system
- Extend the workflow:// schema to support data streaming as staging system.
- Deploy DAGonStar use cases on public cloud to democratize open-source tools and open-data products.

https://works-workshop.org/

https://www.escience-conference.org/2026/

