
One workflow to rule them all: introducing
DAGonStar, yet another workflow engine for
Python developers, designed for HPC and AI.

Prof. Raffaele Montella
University of Naples “Parthenope”

Hi-WeFAI Project

Mytil

Introduction and motivation
Running unattended scientific workflow applications

● Routinary: running each time initial data are available

● On demand: footprint for external software components execution.

● Orchestrating: external software (diverse and different, producing and consuming large files -- or group of files).

● Failsafe: failure have not to be an issue: even partially produced outputs have to be enough to continue the production.

● Replicability, reproducibility, reusability, FAIRness: not just buzzword, but rocksolid cornerstones.

● Co-design: from the application requirements to the middleware features and vice versa.

meteo@uniparthenope

Center for Monitoring and Modeling Marine and Atmospheric applications

http://meteo.uniparthenope.it

http://meteo.uniparthenope.it

Initial &
Boundary
conditions

WRF Preparation

Weather
Research and

Forecast

WW3
Preparation

ROMS
Preparation

Wavewatch 3

Regional Ocean
Model System

Initial and
Boundary
conditions

meteo@uniparthenope http://meteo.uniparthenope.it

http://meteo.uniparthenope.it

Predicting bacteria contamination in farmed mussels

Making predictions about the
pollutant concentration in mussel
farms areas in order to limit human
diseases.

- Companies: 263(d)/886(r)
- Tons: ~64235 (⅔ EU prod - ISPRA)
- Euro/Kg: ~1.75 (average)
~112M€ (2013, Italy)

MARKET

Mussels farming is an
outstanding business
cornerstone in the most part
of Italian coastal regions.

Predicting bacteria contamination in farmed mussels

• Use case: Campania – Italy, Mytilus galloprovincialis

• Farming banks types: Artificial, Natural

Mytilus Galloprovincialis

Microbiological
Escherichia coli

Salmonella

Chemical
Mercury

Lead
Ecotoxicological

Complesso DSP

Yessotossine

Azaspiracides

ASP

PSP

Radioactive
nuclides

Study domain: the Campania Region, South of Italy
Faecal contamination
may arise from a variety of sources:

● Sewage discharges (continuous or
discontinuous)

● Farmed animals
● Wildlife shipping.

Transported and diffused by sea
currents.

Challenges:
High-resolution weather forecasts
Accurate bathymetric model
High-resolution numerical model
Initial conditions.

The big picture

AIQUAM++

Initial conditions

WaComM++

Initial &
Boundary
conditions

WRF Preparation

Weather
Research and

Forecast

WW3
Preparation

ROMS
Preparation

Wavewatch 3

Regional Ocean
Model System

Initial and
Boundary
conditions

Extended Modelling mytilus farming System with High Performance Computing and Artificial Intelligence” (HPC-MytilEX)

http://meteo.uniparthenope.it/mytilex/ MytilEx https://meteo.uniparthenope.it/mytilex/

http://meteo.uniparthenope.it/mytilex/
https://meteo.uniparthenope.it/mytilex/

MytilX (on demand)

AIQUAM++

Initial conditions

WaComM++

Initial &
Boundary
conditions

WRF Preparation

Weather
Research and

Forecast

WW3
Preparation

ROMS
Preparation

Wavewatch 3

Regional Ocean
Model System

Initial and
Boundary
conditions

Modelling mytilus farming at scale

Mytil

SmokeTracer (on demand)
A numerical model-based on demand workflow HPC application to forecast the smoke
plume pattern during a wildfire

https://smoketracer.uniparthenope.it/

https://smoketracer.uniparthenope.it/

SmokeTracer (on demand)

CALPUFF System

CALPUFF
Preparation

Initial &
Boundary
conditions

WRF Preparation

Weather
Research and

Forecast

WW3
Preparation

ROMS
Preparation

Wavewatch 3

Regional Ocean
Model System

Initial and
Boundary
conditions

Buffer 500 mt - 3 km Simulation evolution Highlights municipalities

Let me to introduce
the hero of the day…

Direct Acyclic Graphs as parallel jobs on anything

Named after the
Phoenician god-fish
Dagon known by
ancient Greeks as
Triton.

NB: The Star (*)
symbol is the
wildcard for
anything.

DAGonStar is a production-oriented workflow engine:

● Integrated in the Python environment.

● Minimal footprint for external software
components execution.

● Avoiding any workflow engine centered
data management.

● Checkpoints for failover and execution
recovery.

● Straightforward definition of tasks:
○ Python scripts.
○ Web interaction.
○ External software components.

● Execution sites independence:
○ Local / scheduler (SLURM).
○ Containers (Docker).
○ Clouds (AWS, OpenStack,

DigitalOcean).

https://github.com/dagonstar/

https://github.com/dagonstar/

Architecture

Cloud
ResourcesOn-Prem Resources Containerized Resources

E
xe

cu
to

rs

REST API

DAGonSTAR Runtime DAGonStar
Service

Workflow Task

WebNative Batch Cloud Container

S
S

H
S

LU
R

M

AW
S

D
oc

ke
r

Stager

lin
k

S
ec

ur
e

C
op

y
gr

id
-ft

p

a

b c

d

W
eb

 G
U

I

A
dm

in
 W

eb
 G

U
I

O
pe

nS
ta

ck

Ta
sk

 F
lo

w
 /

D
at

a
Fl

ow
E

ng
in

e

M
on

ito
rin

g
M

an
ag

em
en

t

D
ig

ita
lO

ce
an

DAGonStar App

Components

Workflow Task

Native Web Batch Container Cloud

SLURM Docker AWS OpenStack Digital
Ocean

Python function.

Concurrent
application thread.

REST & SOAP web
services.

Websocket
subscribe & publish.

DagOn Service.

External software.

SSH or scheduler.

Task embedded in
container.

Task embedded in a virtual machine.
Instance status management.
Cloud independent.

Garbage
Collector

Stager

ln scp Grid
ftp

W
eb

 A
P

I
W

or
kf

lo
w

re
gi

st
ra

tio
n

S
ta

tu
s

up
da

te

w
or

kf
lo

w
://

S
ch

em
a

m
an

ag
em

en
t

Data
Mover

workflow:// schema

The Batch component takes charge of the management of data dependencies using the
workflow:// schema.

workflow://workflow_unique_name/task_unique_name/
The schema label The workflow unique name

An UUID could be used, If empty means “current workflow”
The task unique name
Can be dynamically generated by the Python
script when the workflow is created
programmatically.

Ta
sk

 s
cr

at
ch

di

re
ct

or
y

ro
ot

Workflow

Stager

E
xt

er
na

l
so

ftw
ar

e
sa

nd
bo

x

Scratch directory

workflow:///task_a/results.csv

ln

scp

Grid
ftp

out

in

O
ne

 O
f..

.

Garbage Collector

For each batch task in the <workflow> ...
For each workflow://<workflow>/<task>/ reference in the task command line ...

Increment the number of reference to <task>

M
ak

e
D

ep
en

de
nc

ie
s

O
n

Ta
sk

Fi

ni
sh For each workflow://<workflow>/<task>/ reference in the task command line ...

Decrement the number of reference to <task>
If the number of reference to <task> is 0, clean up the involved resource

C
le

an
 U

p Local, remote or shared file system:
Remove the scratch directory.

Virtual machine instance:
Stop the instance.

Container:
Stop the container.

● Tracks the storage and computational resources allocated during tasks execution.
● Proceeds to dispose them when no longer needed. a b

c d
a

a

b c

a b

c d
b c

a b

c d
b c

Programming Model

Python Script: “DAGonStar Hello World App”

import dagon
…
workflow=Workflow(“myapp”,settings)
workflow.add_task(new Task(“a”,”...”))
workflow.add_task(new Task(“b”,”workflow:///a”))
workflow.add_task(new Task(“c”,”workflow:///a”))
workflow.add_task(new Task(“d”,”workflow:///b workflow:///c”))
workflow.run()
sys.exit(0)

a

b c

d

Defined by task
dependencies.

Defined by data
dependencies.

● Dealing with actual data files instead of high-level defined datasets.
● Performing backward data references in order to create dependencies.
● Having more Workflow instances in the same Python application.

Ta
sk

 Flow

Data
 Flow

Simple DAG toy

Application Lifecycle

● As the workflow runs, all tasks are created in WAITING state.

● Each Workflow instance acts as DagOn Service client.

● When a task is going to be in RUNNING, the scratch directory is
created.

● When a task is completed the garbage collector manage the used
resources.

DagOn Runtime a a b c
b
c

a d d c b d

a

b c

d

time

Create
scratch dir

Run

Remove
scratch dir

1 2 3 4 5 6 7 8 9 10

Stage-out

b
c

d

Completed

Start
Finish

DAGonStar

It’s tutorial time!

Docs and tutorials

https://github.com/dagonstar

git clone https://github.com/DagOnStar/dagonstar.git

cd dagonstar

python3 -m venv venv

. venv/bin/activate

pip install -r requirements.txt

export PYTHONPATH=$PWD:$PYTHONPATH

How to install

cp dagon.ini.sample examples/dagon.ini

cd examples/dataflow/batch

python dataflow-demo.py

Demo

https://github.com/dagonstar

dataflow-demo.py (1/3)

from dagon import Workflow

 from dagon.task import DagonTask, TaskType

 # Check if this is the main

 if __name__ == '__main__':

 # Create the orchestration workflow

 workflow=Workflow("DataFlow-Demo")

 # The task a

 taskA = DagonTask(TaskType.BATCH, "A", "mkdir output; hostname > output/f1.txt")

A

B C

D

https://github.com/DagOnStar/dagonstar/tree/master/examples/dataflow/batch

https://github.com/DagOnStar/dagonstar/tree/master/examples/dataflow/batch

dataflow-demo.py (2/3)

 # The task b

 taskB = DagonTask(TaskType.BATCH, "B", "echo $RANDOM > f2.txt; cat

workflow:///A/output/f1.txt >> f2.txt")

 # The task c

 taskC = DagonTask(TaskType.BATCH, "C", "echo $RANDOM > f2.txt; cat

workflow:///A/output/f1.txt >> f2.txt")

 # The task d

 taskD = DagonTask(TaskType.BATCH, "D", "cat workflow:///B/f2.txt >> f3.txt; cat

workflow:///C/f2.txt >> f3.txt")

A

B C

D

https://github.com/DagOnStar/dagonstar/tree/master/examples/dataflow/batch

https://github.com/DagOnStar/dagonstar/tree/master/examples/dataflow/batch

dataflow-demo.py (3/3)

 # add tasks to the workflow

 workflow.add_task(taskA)

 workflow.add_task(taskB)

 workflow.add_task(taskC)

 workflow.add_task(taskD)

 workflow.make_dependencies()

 # run the workflow

 workflow.run()

A

B D

C

https://github.com/DagOnStar/dagonstar/tree/master/examples/dataflow/batch

https://github.com/DagOnStar/dagonstar/tree/master/examples/dataflow/batch

DAGonStar

Tasks as Docker containers
…made easy…

dataflow-demo-docker-remote.py

from dagon import Workflow

from dagon.task import DagonTask, TaskType

Check if this is the main

if __name__ == '__main__':

Create the orchestration workflow

 workflow=Workflow("DataFlow-Demo")

 # The task a

 taskA = DagonTask(TaskType.DOCKER, "A", "mkdir output;hostname > output/f1.txt",

image="ubuntu:latest", ip="", ssh_username="")

A

B C

D

https://github.com/DagOnStar/dagonstar/blob/master/examples/dataflow/docker

DOCKER
APPTAINER
KUBERNETES

https://github.com/DagOnStar/dagonstar/blob/master/examples/dataflow/docker

dataflow-demo-docker-remote.py
 # The task b

 taskB = DagonTask(TaskType.APPTAINER, "B", "echo $RANDOM > f2.txt; cat

workflow:///A/output/f1.txt >> f2.txt", image="ubuntu:latest", ip="", ssh_username="")

 # The task c

 taskC = DagonTask(TaskType.KUBERNETES, "C", "echo $RANDOM > f2.txt; cat

workflow:///A/output/f1.txt >> f2.txt", image="ubuntu:latest", ip="", ssh_username="")

 # The task d

 taskD = DagonTask(TaskType.DOCKER, "D", "cat workflow:///B/f2.txt >> f3.txt; cat

workflow:///C/f2.txt >> f3.txt", image="ubuntu:latest", ip="", ssh_username="")

A

B C

D

https://github.com/DagOnStar/dagonstar/blob/master/examples/dataflow/docker

https://github.com/DagOnStar/dagonstar/blob/master/examples/dataflow/docker

DAGonStar

The extended universe

● DAGonStar batch tasks generate the JSON file based on the dependencies between
tasks, identified thanks to the workflow:// Schema;

● The JSON file is used by the CAPIO server for configuration;

● Tasks make up a pipeline in which one produces files and the other reads them;

● Posix calls made on these output files will be intercepted by the CAPIO server,
allowing it to process this data in RAM.

+ =
Partners

DAGonStar

DAGonStar and CAPIO integration

Application

WRF

Publish

Time 0 3 6 9 12 15 18 21 24 27 30 33 36 39

Application

WRF

Publish

Time 0 3 6 9 12 15 18 21 24 27 30 33 36 39D
A

G
on

C
A

PI
O

D
A

G
on

St
ar

DAGonStar and CAPIO integration

Hi-WeFAI

HPC-based application for Weather nowcasting with Federated AI

https://hiwefai-project.org

https://hiwefai-project.org

GLOWPP

Global Weather model Prototype now and Production in the future

Refactoring, Optimization, and “Production-level” of GLOBO model
developed by ‘ISAC-CNR as an evolution of BOLAM (BOlogna Limited-Area
Model).

https://glowpp-project.org

https://glowpp-project.org

https://glowpp-project.org
https://hiwefai-project.org

DAGonStar

Time to wrap up

Contributors

DAGonStar is open-source and open to the workflow community

Dr. Dante D. Sánchez Gallegos
Prof. Javier Garcia BlasProf. José Luis Gonzalez Compean Prof. Iacopo Colonnelli

Marco Santimaria

Conclusion…
…and future directions:

● Develop DAGonStar for HPC+AI

environmental applications

● Make DAGonFS as stable and reliable

ad-hoc file system

● Extend the workflow:// schema to support

data streaming as staging system.

● Deploy DAGonStar use cases on public

cloud to democratize open-source tools

and open-data products.

https://www.escience-conference.org/2026/https://works-workshop.org/

https://www.escience-conference.org/2026/
https://works-workshop.org/

