
Academy: Empowering Scientific Workflows
with Federated Agents
Presented by: Alok Kamatar

Workflows Community Initiative

15 October 2025

Agentic Workflows

Experimental Facilities Data StorageCompute

Agentic
Infrastructure

2

Academy

http://progress_bar_id

Agentic Middleware
Software layer that transparently manages the lifecycle,

communication, and coordination of autonomous agents
across distributed computing environments.

3

http://progress_bar_id

Agentic Middleware: Scope & Challenges

4

Low Level
Challenges

High Level
Challenges

Deployment

Protocols

LLM APIs

Multi-agent
Conversations

LangChain, AutoGen,
Pydantic AI, etc.Academy Cool Science?

Tool CallingMobility

Fault
Tolerance

Data
Movement

http://progress_bar_id

Steering Workflows

Multi-Site Applications

Integrating Instruments/Experiments

Conversational Assistants

Agentic Patterns Beyond LLMs

5

Agentic Middleware: Agent Behaviors

6

High Autonomy

Low Autonomy

High
Interactivity

Low
Interactivity

Other defining aspects:
● Persistent vs ephemeral
● General vs narrow purpose
● Embodiment

Long-running agentic science
apps will incorporate many kinds
of agent behaviors.

Academy primitives support the
creation diverse agent types.

LLM Agents

Service AgentsMonitor Agents

Optimizer Agents

http://progress_bar_id

Agentic Middleware: Using Research Infrastructure

Centralized
● Agents co-located (workstation, cloud)
● Research infrastructure available via

APIs (REST, SDKs, MCP Servers, …)
● Use infrastructure via tool calling

++ Rapidly growing library ecosystem
-- Limited APIs for infrastructure

7

Decentralized
● Agents distributed across infrastructure
● Agents interact asynchronously
● Use infrastructure directly (actuate a

robot, submit job, …)

++ Data locality, perf., loose coupling
-- Deployment complexity

LangChain, AutoGen,
Pydantic AI, etc.

Academy

http://progress_bar_id

How does Academy support the expression of
diverse agent behaviors and deployment across

distributed/federated resources?

8

http://progress_bar_id

User

Handle

Handle

Control

Actions
Agent

State

Agent

Control

Actions

State

HandlesHandles

Exchange (Data Plane)
Mailbox Mailbox Mailbox

Executor(s) (Control Plane)

9

Focus 1: Program diverse
agents and interactions

Focus 2: Deploy agents
on federated resources

Focus 3: Coordinate
async agent messaging

https://docs.academy-agents.org/latest/concepts/

Self-Managed or Cloud Hosted Service

Globus Compute + Parsl

https://docs.academy-agents.org/latest/concepts/
http://progress_bar_id

Communication & Execution

Exchange
➔ Asynchronous communication through mailboxes
➔ Every agent/client in system has a unique mailbox
➔ Local & distributed implementations
➔ Optimized for low-latency
➔ Hybrid communication model
➔ Prefer direct communication between agents when

possible; fall back to indirect communication via
object store

➔ Pass-by-reference with ProxyStore for large data
➔ Authentication with Globus

10

http://progress_bar_id

Writing Apps in Academy

11

http://progress_bar_id

import asyncio

from academy.agent import Agent, action, loop

class Example(Agent):

 def __init__(self) -> None:

 self.count = 0 # State stored as attributes

 @action

 async def square(self, value: float) -> float:

 return value**2

 @loop

 async def count(self, shutdown: asyncio.Event):

 while not shutdown.is_set():

 self.count += 1

 asyncio.sleep(1)

Agents defined
by a behavior

Clients & other
agents can

request actions

Instance of a
behavior is state

Control loops for
autonomous

behavior

12

https://academy.proxystore.dev/latest/get-started/

http://progress_bar_id
https://academy.proxystore.dev/latest/get-started/

from academy.exchange.hybrid import HybridExchange

...

from academy.manager import Manager

gce = GlobusComputeExecutor('<UUID>')

async with await Manager.from_exchange_factory(
 factory=LocalExchangeFactory(),
 executors=gce,
) as manager:
 behavior = Example() # From the prior slide

 handle = await manager.launch(behavior)

 result = await handle.square(2)

 assert result == 4

 await handle.shutdown()

Single interface
for managing
your agents

Interact with
agents via

handles

Pass handles to
other agents

13

https://academy.proxystore.dev/latest/get-started/

Launch agents via
Globus Compute

Launch agent
and get handle

http://progress_bar_id
https://academy.proxystore.dev/latest/get-started/

Integrating Academy and LLMs

Comparison to Alternatives

Tool Servers (MCP)
Rely on externally reachable endpoints
that are blocked by facility policies.
Requires user to manage services,
infrastructure, and VPNs

Func-as-a-Service (Globus Compute)
Easier remote execution (no VPN,
infrastructure management) but tools
must be stateless, short-running tasks

14

from academy.handle import Handle

from langchain_core.tools import tool

def make_sim_tool(handle: Handle[Simulator]):

 @tool

 async def compute_property(smiles: str) -> float:

 """Compute molecule property."""

 return await handle.compute_property(smiles)

 return compute_property

tool = make_tool(agent_handle)

print(tool.args_schema.model_json_schema())

Turn agent handles into LLM
framework “tools”

Provenance with Flowcept (On going)

➔ Provenance
extensions for
agentic workflows

➔ Captured via Code
Annotation

➔ Leverage Tooling
◆ Grafana
◆ FAIR queries
◆ Notebook

exploration
◆ LLM Interaction

15

from academy.agent import Agent, action

from flowcept import flowcept_agent_tool

class Example(Agent):

 @action

 @flowcept_agent_tool

 async def square(self) -> float:

 return value**2

PROV-AGENT: Modeling Agentic AI Concepts
with W3C PROV (2508.02866)

https://arxiv.org/pdf/2508.02866

Use Case: MOF Discovery

Metal Organic Frameworks (MOF)

➔ Composed of organic molecules (ligands) and
inorganic metals (nodes)

➔ The sponges of materials science!
➔ Porous structures that adsorb and store gases
➔ Topologies can be optimized for targeted gas

storage → Carbon Capture

Intractable search space of ligand,
node, & geometry combinationsHow to efficiently discover MOFs with

desirable properties for target applications?

16

http://progress_bar_id

MOFA: Online learning + GenAI + Simulation

Embodied
Agents*

AI Agent

Knowledge Agent

Computational
Agents

Yan et al., “MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow” (Under Review)

17

https://arxiv.org/abs/2501.10651
http://progress_bar_id

MOFA through Autonomous Agents

Training
Dataset

Generator

Assembler EstimatorDatabase

Validator Optimizer

Chameleon
Cloud

CPUs Storage CPUs

Ligands

MOF
Candidates

Stable
MOFs

Optimized
MOFs

CO2
Capacities

Lattice
Strain

Legend

Agent

Resources

Data Flow

Agents executed remotely via Globus Compute

18

Synthesizer

http://progress_bar_id

Why is this agentic model better?
➔ Placement: Move agents to

resources
➔ Separation of concerns: Resource

acquisition and scaling based on
local workload

➔ Loose coupling: Swap agents or
integrate new agents (e.g., SDL)

➔ Shared agents: Multiple
workflows can share agents
(microservice-like)

First batches of ligands

MOF buffer fills and Assembler scales down

Validator scales out to start processing MOFs

Optimizer scales out after first validated MOFs

Estimate CO2 of optimized MOFs

Assembler and Estimator auto-scale

Batch job walltime expires

MOFA Agents Trace

19

http://progress_bar_id

Use Case: Integral Field Unit Spectroscopy

➔ Highly-sensitive to
instrument calibration

➔ Optical parameters are
continuous in time

➔ Resolution and speed
can be improved using
stateful processing

20

Reach out: alokvk2@uchicago.edu

Learn more: Academy-Agents.org
● ⭐Academy @ github.com/academy-agents
● Cite the paper: arxiv.org/abs/2505.05428v2
● Join Slack
● Follow the tutorial
● Get Started!

21Summary |

Questions?

J. Gregory
Pauloski

Yadu
Babuji

Ryan
Chard

Alok
Kamatar

Mansi
Sakarvadia

Kyle
Chard

Ian
Foster

pip install academy-py

Daniel
Babnigg

Renan
Souza

Daniel
Rosendo

Amal
Gueroudji

Rafael
Ferreira da Silva

http://academy-agents.org
http://github.com/academy-agents
http://arxiv.org/abs/2505.05428v2
http://progress_bar_id

What does the middleware look like?

Function-as-a-Service

Globus Compute, Lambda

++ Remote execution
++ Fire-and-forget model

Workflows

Dask, Parsl, Pegasus

++ Task automation
++ Distributed task execution

Actor Systems

Akka, Dask, Ray

++ Stateful computation
++ Actor-to-actor interaction

Academy
● Fire-and-forget: Agents spawned across remote/federated resources
● Autonomy: Agents have agency over their actions and local state/resources
● Cooperative: Agents interact to execute tasks & workflows

22

Features (rapid fire)

➔ Any number of actions & control loops
➔ Special purpose control loop decorators
➔ Multi-threaded/non-blocking action execution
➔ Startup and shutdown callbacks
➔ State persistence plugins
➔ Re-execution on failure
➔ Agents can launch other agents
➔ Discovery/lookup based on behavior
➔ Handle mailbox multiplexing

Any interesting? Ask
about them at the end!

23

Comparisons to Actor Systems

Experiments performed on Aurora @ ALCF

Low-memory overhead Low-latency messaging

Fast start-up

Why we need ProxyStore!

* Warm Starts

24

Supplemental

25

Autonomous discovery “harnesses the power of
robotics, ML, and AI to solve big problems [...]

faster than ever before.”

Credit: ANL, “Science 101: Autonomous Discovery”

26

https://www.anl.gov/science-101/autonomous-discovery

Challenge 1: Complexity is a Barrier

27

Application Complexity

Middleware & infrastructure is not
ready for automating discovery

27

Challenge 2: Humans are a Bottleneck

Humans synthesize knowledge and propose hypotheses

Humans write, debug, and run programs

Humans interpret results to inform new hypotheses

Credit: Ian Foster, “Empowering Science with Intelligent Middleware and Embodied Agents”

Inefficient use of
research infrastructure

We need to be here
Agents can be the driving entities
➔ Persistent, stateful, cooperative
➔ Intermittent human oversight

28

https://www.dropbox.com/scl/fi/hnkmklsxnm1c3vmfk22kp/MAGIC-Agents-November-2024.pptx?rlkey=xn43lj0bbyz4foan923r3nnqq&e=1&st=gnjads1s&dl=0

✓ Automate closed-loop processes

✓ Natural expression of scientific resources (compute, instruments,
repositories)

✓ Operate autonomously but still cooperatively

✓ Execute multi-stage computational science processes

✓ Reduce mundane task responsibilities of scientists

Solution: Multi-Agent Systems for Science

The whole is greater than the sum of its parts.
- Aristotle

29

Generate

Assemble

Validate

Optimize

Estimate

AI generated ligands

Assembled candidate MOFs

Structurally stable MOFs

Goal-optimized MOFs

Assessed MOFs

Database

Periodic model retraining

Closed Loop Workflows

Hypothesize

Publish

Synthesize

Study

Set Goals

Simulate

Humans set research goals

Humans research related work

Humans create hypotheses to test

Develop
Humans write code and protocols

Humans process workflow results

Humans synthesize MOFs in the lab

Humans publish results

Human-Driven

Automated

30

Experiment

Analyze

Report

Study

Question

Hypothesize

Publish
Store and disseminate
results in the form of
knowledge

Analysis
Discover trends,
improve models, &
interpret results

Service
Perform simulations,
experiments and
make observations

Prediction
Generate testable
hypotheses from
current knowledge

Knowledge
Gather relevant
information and
learn from results

Objective
Given a high-level goal,
derive questions or
pose conjectures

Planning
Manage trade offs & resources

Enforcement
Ensure safety & validity

Exploration
Navigate avenues for discovery

31

Related Efforts

Actor Model

➔ Model for concurrent computing
➔ Message passing & local state
➔ Basic building block for agents

Supported in many systems:
✓ Azure Actors, Dask, Ray, etc.
✗ Autonomous agents
✗ Execute on federated resources

LLM Agents

➔ For multi-agent LLM conversations
➔ Agents assume roles & abilities
➔ Better reasoning and action chains

Supported in many systems:
✓ AutoGen, LangChain, OpenAI, etc.
✓ Call external tools
✗ Limited scope (LLM-based apps)
✗ Distributed execution

How do we build agents?

33Federated Agents |

A computational system that can interact with its
environment and learn from those interactions

Search database, invoke
code, query LLM, …

Credit: Ian Foster, “Empowering Science with Intelligent Middleware and Embodied Agents”

Data repositories, HPC,
robotic labs, other agents

Accumulate data, adapt
processes, improve answers

We are missing the
middleware to build and

connect our agents!

34Federated Agents |

https://www.dropbox.com/scl/fi/hnkmklsxnm1c3vmfk22kp/MAGIC-Agents-November-2024.pptx?rlkey=xn43lj0bbyz4foan923r3nnqq&e=1&st=gnjads1s&dl=0

Middleware Open Challenges

➔ Access & privileges
➔ Agent discovery
➔ Asynchronous communication
➔ Fault tolerance
➔ Interfaces
➔ Mobility
➔ Persistent stateful execution
➔ Provenance
➔ Many more…

35Federated Agents |

Areas we focused on…

Under review in IEEE Computer

Autonomous Discovery Workflow Requirements

Express many kinds of agents
Autonomous, Intelligent,
Embodied, Distributed, Mobile

✗ SOTA frameworks target
single agent type

Execute agents in many places
Near compute or data

✓ P2P inter-agent messaging
✗ Remote launch & management
✗ Supported by SOTA systems

36Federated Agents |

