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Agentic Workflows

Experimental Facilities Data StorageCompute

Agentic
Infrastructure
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Agentic Middleware
Software layer that transparently manages the lifecycle, 

communication, and coordination of autonomous agents 
across distributed computing environments.
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Agentic Middleware: Scope & Challenges
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Low Level
Challenges

High Level
Challenges

Deployment

Protocols

LLM APIs

Multi-agent 
Conversations

LangChain, AutoGen, 
Pydantic AI, etc.Academy Cool Science?

Tool CallingMobility

Fault 
Tolerance

Data 
Movement
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Steering Workflows

Multi-Site Applications

Integrating Instruments/Experiments

Conversational Assistants

Agentic Patterns Beyond LLMs
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Agentic Middleware: Agent Behaviors
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High Autonomy

Low Autonomy

High
Interactivity

Low
Interactivity

Other defining aspects:
● Persistent vs ephemeral
● General vs narrow purpose
● Embodiment

Long-running agentic science 
apps will incorporate many kinds 
of agent behaviors.

Academy primitives support the 
creation diverse agent types.

LLM Agents

Service AgentsMonitor Agents

Optimizer Agents
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Agentic Middleware: Using Research Infrastructure

Centralized
● Agents co-located (workstation, cloud)
● Research infrastructure available via 

APIs (REST, SDKs, MCP Servers, …)
● Use infrastructure via tool calling

++ Rapidly growing library ecosystem
-- Limited APIs for infrastructure
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Decentralized
● Agents distributed across infrastructure
● Agents interact asynchronously
● Use infrastructure directly (actuate a 

robot, submit job, …)

++ Data locality, perf., loose coupling
-- Deployment complexity

LangChain, AutoGen, 
Pydantic AI, etc.

Academy
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How does Academy support the expression of 
diverse agent behaviors and deployment across 

distributed/federated resources?
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User

Handle

Handle

Control

Actions
Agent

State

Agent

Control

Actions

State

HandlesHandles

Exchange (Data Plane)
Mailbox Mailbox Mailbox

Executor(s) (Control Plane)
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Focus 1: Program diverse  
agents and interactions

Focus 2: Deploy agents 
on federated resources

Focus 3: Coordinate 
async agent messaging

https://docs.academy-agents.org/latest/concepts/

Self-Managed or Cloud Hosted Service

Globus Compute + Parsl

https://docs.academy-agents.org/latest/concepts/
http://progress_bar_id


Communication & Execution 

Exchange
➔ Asynchronous communication through mailboxes
➔ Every agent/client in system has a unique mailbox
➔ Local & distributed implementations
➔ Optimized for low-latency
➔ Hybrid communication model
➔ Prefer direct communication between agents when 

possible; fall back to indirect communication via 
object store

➔ Pass-by-reference with ProxyStore for large data
➔ Authentication with Globus

10

http://progress_bar_id


Writing Apps in Academy
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import asyncio

from academy.agent import Agent, action, loop

class Example(Agent):

    def __init__(self) -> None:

        self.count = 0  # State stored as attributes

    @action

    async def square(self, value: float) -> float:

        return value**2

    @loop

    async def count(self, shutdown: asyncio.Event):

        while not shutdown.is_set():

            self.count += 1

            asyncio.sleep(1)

Agents defined 
by a behavior

Clients & other 
agents can 

request actions

Instance of a 
behavior is state

Control loops for 
autonomous 

behavior
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https://academy.proxystore.dev/latest/get-started/
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from academy.exchange.hybrid import HybridExchange

...

from academy.manager import Manager

gce = GlobusComputeExecutor('<UUID>')

async with await Manager.from_exchange_factory(
       factory=LocalExchangeFactory(),  
       executors=gce,  
) as manager:
    behavior = Example()  # From the prior slide

    handle = await manager.launch(behavior)

    

    result = await handle.square(2)

    assert result == 4

    await handle.shutdown()

Single interface 
for managing 
your agents

Interact with 
agents via 

handles

Pass handles to 
other agents
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https://academy.proxystore.dev/latest/get-started/

Launch agents via 
Globus Compute

Launch agent 
and get handle

http://progress_bar_id
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Integrating Academy and LLMs

Comparison to Alternatives

Tool Servers (MCP)
Rely on externally reachable endpoints 
that are blocked by facility policies. 
Requires user to manage services, 
infrastructure, and VPNs

Func-as-a-Service (Globus Compute)
Easier remote execution (no VPN, 
infrastructure management) but tools 
must be stateless, short-running tasks
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from academy.handle import Handle

from langchain_core.tools import tool

def make_sim_tool(handle: Handle[Simulator]):

    @tool

    async def compute_property(smiles: str) -> float:

        """Compute molecule property."""

        return await handle.compute_property(smiles)

    return compute_property

tool = make_tool(agent_handle)

print(tool.args_schema.model_json_schema())

Turn agent handles into LLM 
framework “tools”



Provenance with Flowcept (On going)

➔ Provenance 
extensions for 
agentic workflows

➔ Captured via Code 
Annotation

➔ Leverage Tooling
◆ Grafana 
◆ FAIR queries 
◆ Notebook 

exploration
◆ LLM Interaction
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from academy.agent import Agent, action

from flowcept import flowcept_agent_tool

class Example(Agent):

    @action

    @flowcept_agent_tool

    async def square(self) -> float:

        return value**2

PROV-AGENT: Modeling Agentic AI Concepts 
with W3C PROV (2508.02866)

https://arxiv.org/pdf/2508.02866


Use Case: MOF Discovery

Metal Organic Frameworks (MOF)

➔ Composed of organic molecules (ligands) and 
inorganic metals (nodes)

➔ The sponges of materials science!
➔ Porous structures that adsorb and store gases
➔ Topologies can be optimized for targeted gas 

storage → Carbon Capture

Intractable search space of ligand, 
node, & geometry combinationsHow to efficiently discover MOFs with 

desirable properties for target applications?
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MOFA: Online learning + GenAI + Simulation

Embodied 
Agents*

AI Agent

Knowledge Agent

Computational 
Agents

Yan et al., “MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow” (Under Review)
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https://arxiv.org/abs/2501.10651
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MOFA through Autonomous Agents

Training
Dataset

Generator

Assembler EstimatorDatabase

Validator Optimizer

Chameleon
Cloud

CPUs Storage CPUs

Ligands

MOF
Candidates

Stable
MOFs

Optimized
MOFs

CO2
Capacities

Lattice
Strain

Legend

Agent

Resources

Data Flow

Agents executed remotely via Globus Compute
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Synthesizer
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Why is this agentic model better?
➔ Placement: Move agents to 

resources
➔ Separation of concerns: Resource 

acquisition and scaling based on 
local workload

➔ Loose coupling: Swap agents or 
integrate new agents (e.g., SDL)

➔ Shared agents: Multiple 
workflows can share agents 
(microservice-like)

First batches of ligands

MOF buffer fills and Assembler scales down

Validator scales out to start processing MOFs 

Optimizer scales out after first validated MOFs

Estimate CO2 of optimized MOFs

Assembler and Estimator auto-scale

Batch job walltime expires

MOFA Agents Trace
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Use Case: Integral Field Unit Spectroscopy 

➔ Highly-sensitive to 
instrument calibration

➔ Optical parameters are 
continuous in time

➔ Resolution and speed 
can be improved using 
stateful processing
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Reach out: alokvk2@uchicago.edu

Learn more: Academy-Agents.org
● ⭐Academy  @ github.com/academy-agents
● Cite the paper: arxiv.org/abs/2505.05428v2
● Join Slack
● Follow the tutorial
● Get Started!
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What does the middleware look like?

Function-as-a-Service

Globus Compute, Lambda

++ Remote execution
++ Fire-and-forget model

Workflows

Dask, Parsl, Pegasus

++ Task automation
++ Distributed task execution 

Actor Systems

Akka, Dask, Ray

++ Stateful computation
++ Actor-to-actor interaction

Academy
● Fire-and-forget: Agents spawned across remote/federated resources
● Autonomy: Agents have agency over their actions and local state/resources
● Cooperative: Agents interact to execute tasks & workflows
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Features (rapid fire)

➔ Any number of actions & control loops
➔ Special purpose control loop decorators
➔ Multi-threaded/non-blocking action execution
➔ Startup and shutdown callbacks
➔ State persistence plugins
➔ Re-execution on failure
➔ Agents can launch other agents
➔ Discovery/lookup based on behavior
➔ Handle mailbox multiplexing

Any interesting? Ask 
about them at the end!
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Comparisons to Actor Systems

Experiments performed on Aurora @ ALCF

Low-memory overhead Low-latency messaging

Fast start-up

Why we need ProxyStore!

* Warm Starts
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Supplemental
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Autonomous discovery “harnesses the power of 
robotics, ML, and AI to solve big problems [...] 

faster than ever before.”

Credit: ANL, “Science 101: Autonomous Discovery”
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https://www.anl.gov/science-101/autonomous-discovery


Challenge 1: Complexity is a Barrier
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Application Complexity

Middleware & infrastructure is not 
ready for automating discovery
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Challenge 2: Humans are a Bottleneck

Humans synthesize knowledge and propose hypotheses

Humans write, debug, and run programs

Humans interpret results to inform new hypotheses

Credit: Ian Foster, “Empowering Science with Intelligent Middleware and Embodied Agents”

Inefficient use of 
research infrastructure

We need to be here
Agents can be the driving entities
➔ Persistent, stateful, cooperative
➔ Intermittent human oversight
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https://www.dropbox.com/scl/fi/hnkmklsxnm1c3vmfk22kp/MAGIC-Agents-November-2024.pptx?rlkey=xn43lj0bbyz4foan923r3nnqq&e=1&st=gnjads1s&dl=0


✓ Automate closed-loop processes

✓ Natural expression of scientific resources (compute, instruments, 
repositories)

✓ Operate autonomously but still cooperatively 

✓ Execute multi-stage computational science processes

✓ Reduce mundane task responsibilities of scientists 

Solution: Multi-Agent Systems for Science

The whole is greater than the sum of its parts.
- Aristotle
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Generate

Assemble

Validate

Optimize

Estimate

AI generated ligands

Assembled candidate MOFs

Structurally stable MOFs

Goal-optimized MOFs

Assessed MOFs

Database

Periodic model retraining

Closed Loop Workflows

Hypothesize

Publish

Synthesize

Study

Set Goals

Simulate

Humans set research goals

Humans research related work

Humans create hypotheses to test

Develop
Humans write code and protocols

Humans process workflow results

Humans synthesize MOFs in the lab

Humans publish results

Human-Driven

Automated

30



Experiment

Analyze

Report

Study

Question

Hypothesize

Publish
Store and disseminate 
results in the form of 
knowledge

Analysis
Discover trends, 
improve models, & 
interpret results

Service
Perform simulations, 
experiments and 
make observations

Prediction
Generate testable 
hypotheses from 
current knowledge

Knowledge
Gather relevant 
information and 
learn from results

Objective
Given a high-level goal, 
derive questions or 
pose conjectures

Planning
Manage trade offs & resources

Enforcement
Ensure safety & validity 

Exploration
Navigate avenues for discovery
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Related Efforts

Actor Model

➔ Model for concurrent computing
➔ Message passing & local state
➔ Basic building block for agents

Supported in many systems:
✓  Azure Actors, Dask, Ray, etc.
✗   Autonomous agents
✗   Execute on federated resources

LLM Agents

➔ For multi-agent LLM conversations
➔ Agents assume roles & abilities
➔ Better reasoning and action chains

Supported in many systems:
✓  AutoGen, LangChain, OpenAI, etc.
✓  Call external tools
✗   Limited scope (LLM-based apps)
✗   Distributed execution



How do we build agents?
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A computational system that can interact with its 
environment and learn from those interactions

Search database, invoke 
code, query LLM, …

Credit: Ian Foster, “Empowering Science with Intelligent Middleware and Embodied Agents”

Data repositories, HPC, 
robotic labs, other agents

Accumulate data, adapt 
processes, improve answers

We are missing the 
middleware to build and 

connect our agents!
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Middleware Open Challenges

➔ Access & privileges
➔ Agent discovery
➔ Asynchronous communication
➔ Fault tolerance
➔ Interfaces
➔ Mobility
➔ Persistent stateful execution
➔ Provenance
➔ Many more…
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Areas we focused on…

Under review in IEEE Computer



Autonomous Discovery Workflow Requirements

Express many kinds of agents
Autonomous, Intelligent, 
Embodied, Distributed, Mobile

✗  SOTA frameworks target 
single agent type

Execute agents in many places 
Near compute or data

✓  P2P inter-agent messaging
✗  Remote launch & management
✗  Supported by SOTA systems
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