
Teaching workflow systems to new
graduate students: why is it so hard?

C. Titus Brown
School of Veterinary Medicine;

UC Davis
ctb on github; ctbrown@ucdavis.edu; titus.idyll.org on

bluesky.

Sep 24, 2025 Talk slides available! google ‘titus talk osf.io’

Workflow systems as mirrors of computing complexity.

mailto:ctbrown@ucdavis.edu

Snakemake in two slides

1. Rules & wildcards ({accession})

2. ‘expand’ to generate targets (“concrete” rules)

Snakemake is the best
workflow system for biology.

It’s got a big community and a lot of users.
Just use snakemake.

(Don’t @ me.)

Ok but really:
Snakemake is not a bad workflow

system choice for biologists.

• It’s got a big community and a lot of users.
• It’s integrated with Python and so you can

extend your Snakemake workflow with the
best* programming language.

• It’s fantastic for exploratory research
workflows!!

• I would also advise people look at nextflow.
• CWL and WDL are excellent production

options.
* well, also see Rust.

One big problem with
snakemake:

It’s hard to learn, and the documentation is good, but
only if you’re already computationally expert.

One big problem with
snakemake: it’s hard to learn

Solution?

https://ngs-docs.github.io/2023-snakemake-book-draft/

Introducing me and my
motivations!

Professor at UC Davis. One of the “bioinformatics
generalists” on campus. Many of the biologists need to
do bioinformatics at scale; I would like to help them.

Separately, I am an open sourcenik, with decades of
experience openly developing and maintaining
software. Really interested in good open online
community.

Currently the support and maintenance dude for
sourmash, trying to answer the question: “Can a senior
prof also be an open source maintainer?”

Anyway, back to teaching snakemake…

Two approaches I’ve used to
teaching snakemake

1. Inductive. Start with some shell commands, and
slowly decorate and generalize as we go.

2. Deductive. Build a workflow progressively.

Approach 1: Start with a bunch of shell commands:

Decorate as we go:

End by demonstrating the power of this fully
functional workflow:

Approach 2: Start with basic rules, explain as we go

Do either of these
approaches work?

Not clear? Some people seem to get it… 🤷

Teaching grad students this stuff is really hard.

Moreover, it takes practice to get good at this, and bio
grad students usually don’t actually need to do real
bioinformatics until their 3rd year, when they no longer
want to take classes.

This is the best I can do in the first year, and every now
and then a 3rd year student comes back and says
“ohmigod I get it now! You weren’t actually a terrible
teacher!”

Why is this so hard??

Theory 1: workflow systems are a
mirror of our computing landscape

…which is complex and capricious.

Almost every feature in our workflow systems exists
because of a choice made in how our computing
infrastructure actually works (or, well, fails ;)

My favorite example: exit
codes!

A really important feature of workflow systems is telling you
when a job fails.
By default, our UNIX shells don’t visibly complain when a job
bombs, and a lot of software doesn’t clearly signal when a
catastrophe happens.
(How many of you have written a shell script that just blithely
keeps on going when an important command fails?)

YES, I know about ‘set -e’, but it’s not on by default! For good
reasons!

This is a huge problem for newbies!
“I got 1,000 lines of output… did my script succeed or fail?!”

Snakemake deals with this by forcing failure if exit code is not
zero. This turns out to be one of the biggest deals about it, for
me 😆

(Why zero? Who the heck
knows!)

https://ngs-docs.github.io/2023-snakemake-book-draft/recipes/never-fail-
me.html

UNIX is somewhat arbitrary
and capricious…

…because choices needed to be made, and they were
made, and now we’re dealing with the consequences of
those choices ~60 years later.

(And maybe in another 1000 years, too – ref Vernor
Vinge)

This is a challenging thing to teach.

(YES, there is a reason for many of these decisions. YES, they
are not necessarily bad decisions. I’m just saying that you

can’t figure them out from first principles, and so they need
to be taught in some way! And YES, there are deep

principles underlying computing. Now go try teaching it to a
newbie.)

Implications of theory 1:
“workflow systems are a mirror of our computing

landscape”

Maybe, just maybe, if we could teach a workflow system
properly and thoroughly, people would come away a

more in-depth understanding of how computers work.

Maybe, a really good book on snakemake could be a
really good book on practical computing.

Another challenge: how do we decide what
order to teach things in?

There is basically no principled approach to teaching practical
computation, as far as I can tell.

No concept inventory, no standard textbook, etc.

(YES, I’m sure you have your opinions.)😆

So what order do you introduce concepts in??

Maybe teach based on what people already know?

But this turns out to be heavily path dependent and hence
individualized.

Theory 2: we should design
computational training based on (what

I have named) Kernighan’s Principle

Kernighan’s Law:

 Everyone knows that debugging is twice as hard as
writing a program in the first place. So if you’re as clever
as you can be when you write it, how will you ever debug
it?

 -- Brian Kernighan, 1974

(I was born in 1974. WTF.)

This ”law” led me to “Kernighan’s
Principle for Lesson Design”:

Teach practical computational concepts in the order
of their debuggability.

Running shell commands? Easy, copy paste the command
– does it work?

Wildcards? Easy, snakemake will output the rewritten rule
for you with –p.

Expand? Easy, you can debug with ‘print’.

Cluster distribution? Feckin’ impossible to debug.

Concluding thoughts for
discussion 

1. Teaching workflow systems is hard because you
essentially have to teach an abridged version of ALL
OF COMPUTING.

2. Teach practical computational concepts in the order of
their debuggability.

I think effective use and creation of workflows is a critical
skill for today’s researchers to know about, and we need

to figure out how to teach it well!

Thanks to Cassie Olivas for the memes 

	Teaching workflow systems to new graduate students: why is it s
	Snakemake in two slides
	Slide 3
	Slide 4
	Snakemake is the best workflow system for biology.
	Ok but really: Snakemake is not a bad workflow system choice fo
	Slide 7
	One big problem with snakemake:
	One big problem with snakemake: it’s hard to learn
	Introducing me and my motivations!
	Two approaches I’ve used to teaching snakemake
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Do either of these approaches work?
	Why is this so hard??
	Theory 1: workflow systems are a mirror of our computing landsc
	My favorite example: exit codes!
	(Why zero? Who the heck knows!)
	UNIX is somewhat arbitrary and capricious…
	Implications of theory 1: “workflow systems are a mirror of our
	Another challenge: how do we decide what order to teach things
	Theory 2: we should design computational training based on (wha
	This ”law” led me to “Kernighan’s Principle for Lesson Design”:
	Concluding thoughts for discussion 
	Slide 27

