
Up-scale Python Functions for
High-Performance Computing with Executorlib
Jan Janssen – Group Leader for Materials Informatics

2026/01/14 – Workflow Community Talk

Atomistic Simulation High-Performance Computing Material Property

800
400

1200

0

T
[°C

]

C [wt.%]0 1 2 3

+

+

+

+

2

Materials Informatics Group

MPI for Sustainable Materials | Jan Janssen

Our Expertise: Simulation Workflows to Predict Sustainable Materials

pyiron
Workflow Framework

Jupyter Lab based interface for data-
driven materials informatics to enable

rapid prototyping and up-scaling.

Conda-Forge
Installation of Scientific Software

Large Language Model Agents
for atomistic simulations

Reduce hallucination by restricting the
large language model to use pre-defined

workflows developed by experts.

Maintaining over 1000 materials
informatics packages on conda-forge

with over 500 million downloads so far.
https://github.com/jan-janssen/conda-forge-contribution https://github.com/pyiron - https://pyiron.org Z. Wang, H. Huang, H. Zhao, C. Xu, J. Janssen and

V. Viswanathan – arXiv 2507.14267 (2025).

https://www.mpie.de/5013829/matinf

3

Three Levels of Workflow Interoperability in Materials Science

MPI for Sustainable Materials | Jan Janssen

Simplify the exchange of workflows between the different workflow frameworks

Shared Python Functions Workflow Graph with Data

Reproducibility

Transferability
Python functions are defined
once and can be reused with
different Workflow Managers.

• Easy to implement

• Dependencies are lost

Export workflow in the Python
Workflow Definition to share with
different Workflow Frameworks.

• Reproducibility

• Repeated Calculation

Python Workflow Definition

Sharing the provenances
between different Workflow
Frameworks enables efficient
collaboration.

J. Janssen et al., Digital Discovery (2025). - https://github.com/pythonworkflow

High-level Interface for Asynchronously Executing Callables

4

Python Standard Library

MPI for Sustainable Materials | Jan Janssen https://docs.python.org/3/library/concurrent.futures.html#processpoolexecutor

from concurrent.futures import ProcessPoolExecutor

with ProcessPoolExecutor() as exe:
 future_lst = []
 for i in range(1, 5):
 future_lst.append(exe.submit(sum, [i, i]))

 # check status
 print([f.done() for f in future_lst])

 # wait for computations to complete
 print([f.result() for f in future_lst])

s
u
m
(
[
1
,

1
]
)

s
u
m
(
[
2
,

2
]
)

s
u
m
(
[
3
,

3
]
)

s
u
m
(
[
4
,

4
]
)

Hierarchical Job Scheduler

5

Flux Framework

MPI for Sustainable Materials | Jan Janssen http://flux-framework.org

import concurrent.futures
import flux.job

jobspec = flux.job.JobspecV1.from_command(
 ["/bin/true"]
)
with flux.job.FluxExecutor() as exe:
 future_lst = []
 for i in range(1, 5):
 future_lst.append(exe.submit(jobspec))

 # wait for computations to complete
 print([f.result() for f in future_lst])

Tasks are distributed
in the queuing
system allocation

"
/
b
i
n
/
t
r
u
e
"

"
/
b
i
n
/
t
r
u
e
"

"
/
b
i
n
/
t
r
u
e
"

"
/
b
i
n
/
t
r
u
e
"

Combines the Python Standard Library Executor Interface with Flux

6

Executorlib

MPI for Sustainable Materials | Jan Janssen

from executorlib import FluxJobExecutor

with FluxJobExecutor() as exe:
 future_lst = []
 for i in range(1, 5):
 future_lst.append(exe.submit(sum, [i, i]))

 # check status
 print([f.done() for f in future_lst])

 # wait for computations to complete
 print([f.result() for f in future_lst])

s
u
m
(
[
1
,

1
]
)

s
u
m
(
[
2
,

2
]
)

s
u
m
(
[
3
,

3
]
)

s
u
m
(
[
4
,

4
]
)

Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib

7

Up-scale your Python Functions with Executorlib

MPI for Sustainable Materials | Jan Janssen

No Database, No Daemon Process, Just Job Schedulers

Executor Communication Scheduler
SingleNodeExecutor Socket
SlurmClusterExecutor File SLURM
SlurmJobExecutor Socket SLURM
FluxClusterExecutor File Flux
FluxJobExecutor Socket Flux

Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib

Assignment of Computational Resources

8

Message Passing Interface in Python

MPI for Sustainable Materials | Jan Janssen

from executorlib import FluxJobExecutor

def calc_mpi(i):
 from mpi4py import MPI
 size = MPI.COMM_WORLD.Get_size()
 rank = MPI.COMM_WORLD.Get_rank()
 return i, size, rank

with FluxJobExecutor() as exe:
 fs = exe.submit(calc_mpi, 3, resource_dict={
 "cores": 2,
 "threads_per_core": 1,
 "gpus_per_core": 1,
 "cwd": "/a/b/c",
 })

Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib

Beyond the Execution

9

Cache Results

MPI for Sustainable Materials | Jan Janssen

from executorlib import SingleNodeExecutor, get_cache_data

def calc_add(a, b):
 return a + b

with SingleNodeExecutor(cache_directory=”./cache”) as exe:
 future = 0
 for i in range(1, 4):
 future = exe.submit(calc_add, i, future)
 print(future.result())

Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib

Beyond the Execution

9

Cache Results

MPI for Sustainable Materials | Jan Janssen

with SingleNodeExecutor(cache_directory=”./cache”) as exe:
 future = 0
 for i in range(1, 4):
 future = exe.submit(calc_add, i, future)
 print(future.result())

pandas.DataFrame(get_cache_data(cache_directory=”./cache”))

Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib

Link Python Functions with Different Resource Requirements

10

From Python Functions to Workflows – Dependency Management

MPI for Sustainable Materials | Jan Janssen

from executorlib import SingleNodeExecutor

def calc_add(a, b):
 return a + b

with SingleNodeExecutor() as exe:
 future = 0
 for i in range(1, 4):
 future = exe.submit(calc_add, i, future)
 print(future.result())

Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib

Link Python Functions with Different Resource Requirements

10

From Python Functions to Workflows – Dependency Management

MPI for Sustainable Materials | Jan Janssen

from executorlib import SingleNodeExecutor

def calc_add(a, b):
 return a + b

with SingleNodeExecutor(plot_dependency_graph=True) as exe:
 future = 0
 for i in range(1, 4):
 future = exe.submit(calc_add, i, future)
 print(future.result())

Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib

Link Python Functions with Different Resource Requirements

10

From Python Functions to Workflows – Dependency Management

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib

from executorlib import SingleNodeExecutor

def calc_add(a, b):
 return a + b

with SingleNodeExecutor(export_workflow_filename="flow.json") as exe:
 future = 0
 for i in range(1, 4):
 future = exe.submit(calc_add, i, future)
 print(future.result())

Ab-initio Thermodynamics

11

Temperature Concentration Phase Diagram

MPI for Sustainable Materials | Jan Janssen S. Menon, Y. Lysogorskiy, A. L. M. Knoll, N. Leimeroth, M. Poul, M. Qatar, J. Janssen, M. Mrovec,
J. Rohrer, K. Albe, J. Behler, R. Drautz and J. Neugebauer. npj Comput. Mater., 10, 261 (2024)

x f

D
O
S

Free Energy

Bulk Modulus

Phase Diagram

Domain Knowledge

Convex Hull

Data Generation

Phonons

E

V

phonopy

E

Potential Fitting

LAMMPS

Random Crystals

F

Calculation of Phase Diagrams

Bulk

x

Validation of Material Properties

Defects

Materials Project

x

Random
Perturbation SQS

T

PyXtal

Calculation of forces and energies VASP

EAM HDNNP ACE

Atomicrex RuNNer Pacemaker

Active Learning Active Learning

Workflows
pyiron

calphy

11

Temperature Concentration Phase Diagram

MPI for Sustainable Materials | Jan Janssen S. Menon, Y. Lysogorskiy, A. L. M. Knoll, N. Leimeroth, M. Poul, M. Qatar, J. Janssen, M. Mrovec,
J. Rohrer, K. Albe, J. Behler, R. Drautz and J. Neugebauer. npj Comput. Mater., 10, 261 (2024)

x f

D
O
S

Free Energy

Bulk Modulus

Phase Diagram

Domain Knowledge

Convex Hull

Data Generation

Phonons

E

V

phonopy

E

Potential Fitting

LAMMPS

Random Crystals

F

Calculation of Phase Diagrams

Bulk

x

Validation of Material Properties

Defects

Materials Project

x

Random
Perturbation SQS

T

PyXtal

Calculation of forces and energies VASP

EAM HDNNP ACE

Atomicrex RuNNer Pacemaker

Active Learning Active Learning

Workflows
pyiron

calphy

Machine-Learned Interatomic Potential Experiment (CALPHAD)

Ab-initio Thermodynamics

12

Fitting Interatomic Machine Learning Potentials

MPI for Sustainable Materials | Jan Janssen

Maximize the Resource Utilization

DFT
Calculation

Fit ML
Potential

Active
Learning

Submit a set
of 100-1000
structures

Hyper
Parameter

Study

Collect
Structures
from MD

Runtime

Ta
sk

s

Runtime

Ta
sk

s Convergence

Step-by-step Workflow Streaming Workflow

https://executorlib.readthedocs.io - Janssen et al. JOSS, 10, 108 (2025)

13

Develop a Machine Learning Potential in Two Hours

MPI for Sustainable Materials | Jan Janssen

Testing on Frontier

Runtime

Ta
sk

s Convergence

Streaming Workflow

DFT
Calculation

Fit ML
Potential

Active
Learning

Submit a set
of 100-1000
structures

Hyper
Parameter

Study

Collect
Structures
from MD

DFT Calculation: 234 nodes
SNAP Descriptors: 8 nodes
Fitting: 2 nodes
Validation: 6 nodes

Runtime (minutes)

Co
m

pl
et

ed
 T

as
ks

https://executorlib.readthedocs.io - Janssen et al. JOSS, 10, 108 (2025)

14

Streaming Workflow in Executorlib

MPI for Sustainable Materials | Jan Janssen

From a Group of Tasks Take the Batch of Tasks Which Finishes First

Task 1.1

Task 1.2

Task 1.3

Task 1.4

Task 1.5

Task 2.1

Task 2.2

Task 2.3

from executorlib import SingleNodeExecutor

with SingleNodeExecutor() as exe:
 task_one_lst = []
 for i in range(…):
 task_one_lst.append(
 exe.submit(task_one, …)
)

 task_two_lst = []
 for f in exe.batched(task_one_lst, n=2):
 task_two_lst.append(
 exe.submit(task_two, …)
)

Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib

15

Reusing Data in Memory

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib

from executorlib import FluxJobExecutor

def init_function():
 return {"j": 4, "k": 3, "l": 2}

def calc_with_preload(i, j, k):
 return i + j + k

with FluxJobExecutor(
 max_workers=2,
 resource_dict={"cores": 1},
 init_function=init_function,
 block_allocation=True,
) as exe:
 fs = exe.submit(calc_with_preload, 2, j=5)

Block Allocation

Based on Flux Hierarchical Job Scheduler

16

Hierarchical Task Management

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib

from executorlib import FluxJobExecutor

def calc_nested():
 from executorlib import FluxJobExecutor
 with FluxJobExecutor() as exe:
 fs = exe.submit(sum, [1, 1])
 return fs.result()

with FluxJobExecutor(flux_executor_nesting=True) as exe:
 future = exe.submit(calc_nested)
 print(future.result())

From Scientists for Scientists

17

Open-Source Development

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib

Continuous Integration with

From your local workstation to high-performance computing and the Exascale

18

Summary: Up-scale Python Functions with Executorlib – Thank you

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib

Executorlib
For Up-Scaling Python Functions

No database, no daemon process, just a
Python interface to high-performance

computing job schedulers.

Streaming Workflows for
Exascale Materials Science

Beyond Python Functions
Towards Python Workflows

Follow the interface of the concurrent
futures Executor class extended to

address scientific computing challenges.

Maximizing the utilization of available
computational resources to gain

scientific insights as fast as possible.

DFT
Calculation

Fit ML
Potential

Active
Learning

Submit a
set of 100-

1000
structures

Hyper
Parameter

Study

Collect
Structures
from MD

Runtime

Ta
sk

s

Convergence

