IOV IO

200 | 004 MAX PLANCK INSTITUTE
PO %I%I %_Q FOR SUSTAINABLE MATERIALS

Up-scale Python Functions for

High-Performance Computing with Executorlib
Jan Janssen — Group Leader for Materials Informatics

1 2 3 Clwt% B
Atomistic Simulation High-Performance Computing Material Property ° o

2026/01/14 — Workflow Community Talk

(o] o (o] (o] (o] (o] o (o]
o

OOOOOOOOOOO

OOOOOOOOOOO

Materials Informatics Group

Our Expertise: Simulation Workflows to Predict Sustainable Materials

Ve oot b 6 6

a8

Conda-Forge
Installation of Scientific Software

W

atomman

openkim 1 —

x1iff CONDA-FORGE

aflow

matplotlib matminer

pandas
ase numpy

>ytorch bokeh

tensorflow dask
nglview

pyhull
atomate

sgsgenerator

scikit-learn jupyter

pymatgen
pycalphad phonopy

Maintaining over 1000 materials
informatics packages on conda-forge
with over 500 million downloads so far.

https://github.com/jan-janssen/conda-forge-contribution

pyiron
Workflow Framework

Jupyter Lab based interface for data-
driven materials informatics to enable
rapid prototyping and up-scaling.

https://github.com/pyiron - https://pyiron.org

Large Language Model Agents
for atomistic simulations

Plan Structurre Pseudopotential Tem;?late Sonvergence
— 7 — — Script — Test
Generated Creation look up 2 >
Creation Preparation
+
:Ifmutf_ce — b’°_b, UNIVERSITY OF
gl MICHIGAN
Determine Tem;?Iate EOS Script
Convergence —> Script —— %
4 Generation
parameters Creation |
Resource Job Supervisor
Allocation Submission
I DFT Agent
Lattice HPC Agent

Extract

Constant ——
Result ER

Calculation

Reduce hallucination by restricting the
large language model to use pre-defined
workflows developed by experts.

Z. Wang, H. Huang, H. Zhao, C. Xu, J. Janssen and
V. Viswanathan — arXiv 2507.14267 (2025).

MPI for Sustainable Materials | Jan Janssen

https://www.mpie.de/5013829/matinf

Three Levels of Workflow Interoperability in Materials Science

Simplify the exchange of workflows between the different workflow frameworks

Shared Python Functions

def add_x_and_y(x, y): & ATiDA
Z =X +Yy
return z Job

def add_x_and_y_and_z(x, vy, z):)£3L
W=X+Y + 2 P
return w

Python functions are defined
once and can be reused with
different Workflow Managers.

« Easyto implement

« Dependencies are lost ®

Python Workflow Definition

Job

@nd | y()=DelayedObject

add x and y and z()=DelayedObject

Export workflow in the Python
Workflow Definition to share with
different Workflow Frameworks.

« Reproducibility |
* Repeated Calculation ®

Workflow Graph with Data

Sharing the provenances
between different Workflow
Frameworks enables efficient
collaboration.

MPI for Sustainable Materials | Jan Janssen

J. Janssen et al., Digital Discovery (2025). -

https://github.com/pythonworkflow

Python Standard Library
High-level Interface for Asynchronously Executing Callables

from concurrent.futures import ProcessPoolExecutor

with ProcessPoolExecutor () as exe:
future 1st = []
for 1 in range(l, 5):
future lst.append(exe.submit (sum, [1, 1]))

check status
print ([f.done() for f in future 1lst])

wait for computations to complete
print([f.result() for £ in future 1st])

MPI for Sustainable Materials | Jan Janssen https://docs.python.org/3/library/concurrent.futures.html#processpoolexecutor 4

Flux Framework
Hierarchical Job Scheduler

Tasks are distributed
in the queuing
system allocation

import concurrent.futures
import flux.job

)"

Jjobspec = flux.job.JobspecVl.from command (
[("/bin/true™]

)

with flux.job.FluxExecutor() as exe:

for 1 in range(l, 5):
future lst.append(exe.submit (Jobspec))

@ "/bin/true"

G €> "/bin/true"

G Q "/bin/true"

e @ "/bin/true"

wait for computations to complete
print([f.result() for £ in future 1st])

e

|
|
|
|
|
|
|
|
|
future lst = [] :
|
|
|
|
|
|
|
|

MPI for Sustainable Materials | Jan Janssen http://flux-framework.org 5

Executorlib
Combines the Python Standard Library Executor Interface with Flux

from executorlib import FluxJobExecutor

with FluxJobExecutor () as exe:
future 1st = []
for 1 in range(l, 5):
future lst.append(exe.submit (sum, [1, 1]))

check status
print ([f.done() for f in future 1lst])

3

_"F' r =

IRRR

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib 6

wait for computations to complete
print([f.result() for £ in future 1st])

Up-scale your Python Functions with Executorlib
No Database, No Daemon Process, Just Job Schedulers

{ Executor()] 'EEE: l
S!I.!rm UX
submit() Tt job scheduler Executor Communication | Scheduler
SingleNodeExecutor Socket
s execute SlurmClusterExecutor File i SLURM
s T T Python
DCEO SlurmJobExecutor Socket ;ifff?ri SLURM
FluxClusterExecutor File Slux Flux
communicate
& M e i { task completed J
FluxJobExecutor Socket ﬂux Flux
{ shutdown()]

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib 7

Message Passing Interface in Python
Assignment of Computational Resources

from executorlib import FluxJobExecutor

def calc mpi (1) :
from mpidpy import MPI
size = MPI.COMM WORLD.Get size()
rank = MPI.COMM WORLD.Get rank()
return 1, size, rank

with FluxJobExecutor () as exe:
fs = exe.submit (calc mpi, 3, resource dict={
"cores": 2,
"threads per core": 1,
"gpus per core": 1,
"cwd": "/a/b/c",

})

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib 8

Cache Results
Beyond the Execution

from executorlib import SingleNodeExecutor, get cache data

def calc add(a, b):
return a + Db

with SingleNodeExecutor(cache_directory=”./cache”) as exe:

future = 0
for 1 in range(l, 4):
future = exe.submit (calc add, 1, future)

print (future.result ())

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib 9

Cache Results
Beyond the Execution

with SingleNodeExecutor(cache_directory=”./cache”) as exe:

future = 0
for 1 in range(1l, 4):
future = exe.submit (calc add, 1, future)

print (future.result ())

pandas.DataFrame(get_cache_data(cache_directory=”./cache”))

function input_args input_kwargs output runtime

0 <built-in function sum> [[1, 11] {} 2 0.180522
1 <built-in function sum> [[2, 2]] {} 4 0.179688
2 <built-in function sum> [[3, 3]] {} 6 0.132677

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib

From Python Functions to Workflows — Dependency Management
Link Python Functions with Different Resource Requirements

from executorlib import SingleNodeExecutor

def calc add(a, b):
return a + Db

with SingleNodeExecutor () as exe:

for 1 in range(l, 4):

future = exe.submit (calc add, 1, future)
print (future.result ())

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib 10

From Python Functions to Workflows — Dependency Management
Link Python Functions with Different Resource Requirements

from executorlib import SingleNodeExecutor

def calc add(a, b):

return a + b
calc_add
with SingleNodeExecutor (plot dependency graph=True) as exe: ‘/
future = 0 %
for 1 in range(l, 4): calc add
future = exe.submit (calc add, i, future) _
print (future.result ()) ‘/

calc add

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib 10

From Python Functions to Workflows — Dependency Management
Link Python Functions with Different Resource Requirements

from executorlib import SingleNodeExecutor

def calc add(a, b):
return a + Db

with SingleNodeExecutor (export workflow filename="flow.json") as exe:

future e O % o B /;\ . I \
for 1 in range(l, 4): osAlIDA JOb\g:i<:Z>‘\\f'\./ ,ﬁi
) /

future = exe.submit (calc add, i, future \\\\\]
prlnt (fUture - LES Ul t ()) ’Python Workflow Deﬁnition]
7 N\ 9
@ 3 JSON
Conda Environment Python Module JSON Workflow
MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib 10

Temperature Concentration Phase Diagram
Ab-initio Thermodynamics

g Data Generation N Potential Fitting h
Domain Knowledge Random Crystals EAM HDNNP ACE
o @ 0.0 (0,0 o
“’oog ? % oo ﬁo 3o aoeo s @ +
o-o Random — C
Bulk Defects Perturbation n +
Materials Project PyXtal
Y F (Z.) * i_% =
Calculation of forces and energies VASP) Atomicrex RuNNer Pace'r;laker)
. . K
Active Learning Active Learning
N\

" Calculation of Phase Diagrams | [Validation of Material Properties)

Free Energy

Phase Diagram

v

A

E D Il
F T U 0 /4 \‘
N = |}
2 e L L/
‘ [Y% f

X
‘ | Bulk Modulus Convex Hull Phonons
X X
calphy LAMMPS phonopy
/ -
pyiron
Workflows
MPI for Sustainable Materials | Jan Janssen S. Menon, Y. Lysogorskiy, A. L. M. Knoll, N. Leimeroth, M. Poul, M. Qatar, J. Janssen, M. Mrovec, 11

J. Rohrer, K. Albe, J. Behler, R. Drautz and J. Neugebauer. npj Comput. Mater., 10, 261 (2024)

Temperature Concentration Phase Diagram
Ab-initio Thermodynamics

Machine-Learned Interatomic Potential

1000
900
liquid
Z 800} FCC + liquid liquid + AlLi

700 Fcc FCC + AlLi

60

9.0 0.1 0.2 0.3 0.4
XLi

0.5

Experiment (CALPHAD)

1000
liquid
900 | FCC + liquid liquid + AlLi
800 |-
FCC Alll
700 FCC + AlLi
095 0.1 0.2 0.3 04 0.5

XLi

MPI for Sustainable Materials | Jan Janssen

S. Menon, Y. Lysogorskiy, A. L. M. Knoll, N. Leimeroth, M. Poul, M. Qatar, J. Janssen, M. Mrovec,

J. Rohrer, K. Albe, J. Behler, R. Drautz and J. Neugebauer. npj Comput. Mater., 10, 261 (2024)

11

Fitting Interatomic Machine Learning Potentials

Maximize the Resource Utilization
. Submit a set
DFT of 100-1000

Collect
Structures Caloulat
from MD alculation structures
Streaming Workflow
Active Fit ML 4
Learning Potential o Convergence
X
2 il
o [
- >
Runtime
Hyper
Parameter
Study

MPI for Sustainable Materials | Jan Janssen https://executorlib.readthedocs.io - Janssen et al. JOSS, 10, 108 (2025) 12

Develop a Machine Learning Potential in Two Hours

Testing on Frontier

Collect . Submit a set
Structures DFT of 100-1000
from MD Calculation structures

Active Fit ML
Learning . Potential

Hyper
Parameter
Study

Streaming Workflow
A

Convergence

Tasks

- >
Runtime

Completed Tasks

20001 DFT Calculation: 234 nodes
SNAP Descriptors: 8 nodes
1750 - ..
Fitting: 2 nodes
1500 { Validation: 6 nodes
1250 -
1000 -
750 1
500 -
5040_ X
250 - N
0 _ﬁ — n;;;,"laf
(') 2l0 4'0 6l0 8l0 160 12'0

Runtime (minutes)
MPI for Sustainable Materials | Jan Janssen https://executorlib.readthedocs.io - Janssen et al. JOSS, 10, 108 (2025)

13

Streaming Workflow in Executorlib
From a Group of Tasks Take the Batch of Tasks Which Finishes First

from executorlib import SingleNodeExecutor

with SingleNodeExecutor () as exe:
task one 1st = []
for 1 in range(..):

Task 1.2 m-» task one lst.append (
exe.submlt (task one, ..)
Task 1.4 m task two 1st = []
for f in exe.batched(task one 1st, n=2):

task two lst.append
exe.submlt (task two, ..)

)

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib 14

Reusing Data in Memory
Block Allocation

from executorlib import FluxJobExecutor

def init function():
return {("j3": 4, "k": 3, "1": 2}

def calc with preload(i, 3j, k):
return 1 + jJ + Kk

with FluxJobExecutor (
max workers=2,
resource dict={"cores": 1},
init function=init function,
block allocation=True,

) as exe:
fs = exe.submit (calc with preload, 2, Jj=5)

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib 15

Hierarchical Task Management
Based on Flux Hierarchical Job Scheduler

from executorlib import FluxJobExecutor

def calc nested():
from executorlib import FluxJobExecutor

with FluxJobExecutor () as exe:
fs = exe.submit (sum, [1, 17)
return fs.result ()

with FluxJobExecutor (flux executor nesting=True) as exe:
future = exe.submit (calc nested)
print (future.result ())

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib 16

Open-Source Development
From Scientists for Scientists

O Product Solutions Resources Open Source Enterprise Pricing Q Sign in | Sign up ‘ 3=

& pyiron/ executorlib Public L3 Notifications % Fork 3 Y% Star 36

<> Code () Issues 26 7 Pullrequests 4 (®) Actions (O Security |~ Insights

¥ main ~ ¥ 5Branches © 78 Tags Q Go tofile <> Code ~ About

Up-scale python functions for high

m README 513 BSD-3-Clause license E performance comput|ng (HPC)

& executorlib.readthedocs.io

eXECUtor"b COHtanOUS |ntegrat|0n With SiiflEETl ﬂux flux hpc multiprocessing mpi

workload manager

slurm mpidpy pyiron

[0 Readme
&8 BSD-3-Clause license
P X : o ; 2)d43ca3 « yesterday i - X
&® pre-commit-ci[bot] [pre-commit.ci] pre-commit autoupdate (#766) @8 0d43ca3 - yesterday (&) 1,747 Commits CZ Cite this repository -
o . : A~ Activity
88 .ci_support Update integration test environment (#755) last week
(= Custom properties
B .github Remove conda default channel (#765) yesterday ¢¢ 36stars
B8 binder Bump pysqa from 0.2.6 to 0.2.7 (#702) 3 weeks ago ® 6 watching

MPI for Sustainable Materials | Jan Janssen Janssen et al. JOSS, 10, 108 (2025) - https://github.com/pyiron/executorlib 17

Summary: Up-scale Python Functions with Executorlib — Thank you

From your local workstation to high-performance computing and the Exascale

Streaming Workflows for
Exascale Materials Science

Collect Submit a
SchﬂueS DFT 862%;;30-
from MD Calculation

structures
Active Fit ML
Learning . Potential
% N
Convergence Hyper
o Parameter
ECP
> \\u—
Runtime EXASCALE COMPUTING PROJECT

Maximizing the utilization of available
computational resources to gain

Executorlib
For Up-Scaling Python Functions

job scheduler

check Sl
Sl T ¥ yshon
function
communicate
........ Sp=r= task completed
result

shutdown()

No database, no daemon process, just a
Python interface to high-performance

Beyond Python Functions
Towards Python Workflows

from executorlib import SingleNodeExecutor

future = 0 calc_add
for i in range(l, 4): f/

future = exe.submit (
calc_add, i, future calc_add
! /

print (future.result())

def calc _add(a, b):
return a + b

with SingleNodeExecutor () as exe:

calc_add

Follow the interface of the concurrent
futures Executor class extended to

address scientific computing challenges.

computing job schedulers.

scientific insights as fast as possible.

18

MPI for Sustainable Materials | Jan Janssen

Janssen et al. JOSS, 10, 108 (2025) -

https://github.com/pyiron/executorlib

