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BACKGROUND

» Today data-intensive workflows are largely used to orchestrate complex
sets of tasks handling and processing huge amounts of data.

» A data-intensive workflow is a computational process that involves
processing steps implementing big data acquisition, data transformation,
data analysis, result storage and visualization.

» Efficient techniques (like machine learning) are vital to reduce execution
time when complex data-intensive workflows must be run efficiently.

= In particular, in-memory processing prediction can bring important
benefits to speeup execution by avoiding/limiting usage of disk storage.

GOALS & RESULTS

= We developed a new tool, called Intelligent In-memory Workflow
Manager (IIWM), for optimizing the in-memory execution of data-
intensive workflows on parallel machines.

= JIWM is based on two complementary strategies:

a machine learning strategy for predicting the memory occupancy and
execution time of workflow tasks;

a scheduling strategy that allocates tasks to a computing node, taking
into account the (predicted) memory occupancy and execution time of
each task and the memory available on that node.
» The effectiveness of the machine learning-based predictor and the
scheduling strategy have been assessed experimentally.
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ITWM FOR MEMORY RESORCES

= The IIWM workflow manager improves application /;)
performance through adaptive usage of memory =
resources.

= This is done by identifying clusters of tasks that =
can be executed in parallel on the same node, o
optimizing in-memory processing, so avoiding the 1 "@"

use of disk storage. 2N\ f‘@" —.@

= Given a data-intensive workflow, the IIWM exploits ' ) ‘

a meta-learning model for estimating the amount b - E
of memory required by each workflow task and its [_Ej l y
execution time. @

IIWM PREDICTIONS

» The IIWM meta-learning model (regressions+decision tree) is trained
on a log of past executed workflows.

= A set of relevant features of workflows are considered:
= Workflow structure, in terms of tasks and data dependencies.

= Input size & format, such as the number of rows, dimensionality, and all other
features required to describe the complexity of input data.

= The types of tasks, i.e., the computation performed by a given node of the
workflow.

= For example, in the case of data analysis workflows, we can distinguish among
supervised learning, unsupervised learning, and association rule discovery tasks,
as well as between training and prediction tasks.
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ITWM PREDICTIONS

= Predictions made for a given computing server are applicable to all similar

computing servers (i.e., having the same architecture, processor type, operating
system, memory resources).

= This makes the proposed approach effectively usable on large-scale homogeneous

HPC systems composed of many identical servers.

= Given a data-intensive workflow, the IIWM exploits the estimates coming from the

machine learning model for producing a scheduling plan aimed at reducing (and,
in most cases, avoiding) main memory saturation events, which can occur when
multiple tasks are executed concurrently on the same computing node.
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Given a workflow and a prediction model, IIWM generates a scheduling plan in two steps:

stages and task assignment building (the goal is to avoid swapping to disk due to memory
saturation);

stage consolidation (aimed at reducing the number of stages by merging stages without
dependencies according to the available memory).
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BACKGROUND: MULTIMODAL APPROACHES

= JIWM has been experimentally evaluated using Spark as a testbed.

= We assessed the benefits coming from the use of the IIWM by
executing

= two synthetic workflows and
* a real one

generated for investigating specific scenarios related to the presence
of a high level of parallelism and a limited amount of main memory
reserved for execution.

= We carried out an in-depth comparison between the IIWM and a blind
scheduling strategy, which only considers workflow dependencies for
parallel execution of tasks.

EXPERIMENTAL RESULTS - A USE CASE

= A workflow composed of the 27 tasks was
characterized by highly heavy tasks and very low
resources, where the execution of a single task
can exceed the available RAM memory.

= In particular, the task T18 had an estimated
peak memory occupancy higher than Spark’s
available unified memory of 5413.8 MB (i.e,
corresponding to a heap size of 9.5 GB).

= This would bring the IIWM scheduling algorithm
to allocate the task to a new stage, but memory
would be saturated anyway.
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IIWM is able to adapt the execution to available resources, finding
a good trade-off between the maximization of the parallelism and the
minimization of the memory saturation probability.
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CONCLUSIONS & FUTURE WORK

= Data-intensive workflows are widely used in several application domains, such as
bioinformatics, high-energy physics, Gen IA, data science, complex simulation.

= The Intelligent In-memory Workflow Manager (IIWM), aims at optimizing the in-
memory execution of data-intensive workflows on high-performance computing
systems.

= Experimental results suggested that by jointly using a machine learning model for
performance estimation and a suitable scheduling strategy, the execution of data-
intensive workflows can significantly improve memory usage with respect to state-of-
the-art blind strategies.

In future work, additional aspects of the performance estimation will be investigated,
extending information about tasks, input data, and hardware platform features.
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