More than human in the loop: Next generation computational workflows for engineering design

Matthias Möller

6-Jun-2025

Engineering designs

Engineering design workflows

- Design creation
- Performance analysis
- Design optimization
- Maintenance, overhaul & repair
- Digital twin technologies

Engineering design workflows

Computer-aided design (CAD)

Computer-aided engineering (CAE)

batch mode

New kids on the blocks

Computer-aided design (CAD)

Computer-aided engineering (CAE)

New kids on the blocks

Computer-aided design (CAD)

Computer-aided engineering (CAE)

- reduced order models
- physics-informed machine learning
- data-driven models

batch mode

online/offline mode

The incompatibility challenge

CAD: NURBS geometry models

- surface parameterizations (BRep)
- often non-watertight or trimmed
- often of poor 'analysis-quality'

CAE: Finite Element Analysis

- time-consuming (manual) preprocessing
- no bidirectional link to 'exact' geometry

The incompatibility challenge

CAD: NURBS geometry models

- surface parameterizations (BRep)
- often non-watertight or trimmed
- often of poor 'analysis-quality'

Text-to-CAD / generative AI for design

- at best same drawbacks as regular CAD
- often not even parametric geometry models

CAE: Finite Element Analysis

- time-consuming (manual) preprocessing
- no bidirectional link to 'exact' geometry

Physics-informed machine learning

- often 'FEA-incompatible' collocation formalism
- different convergence/consistency concepts

It needs more than just a technical solution

Possible technical solution: Isogeometric Analysis

• Perform CAD and CAE in the same mathematical framework \rightarrow NURBS/B-splines

Figure 3.1 from J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs: Isogeometric Analysis – Towards Integration of CAD and FEA

It needs more than just a technical solution

Possible technical solution: Isogeometric Analysis

• Perform CAD and CAE in the same mathematical framework \rightarrow NURBS/B-splines

Remaining challenges

- BRep (CAD) ≠ VRep (CAE)
- Usability of V-CAD tools for design
- Added value of V-CAD tools for analysis
- Integration of AI/ML based techniques

- → Volumetric CAD tools
- \rightarrow Automated volumetric parameterization tools
- → **Design-through-Analysis** (DTA) workflows
- \rightarrow NURBS-based AI/SciML tools

DTAtools – The vision

DTAtools – Reality check

DTAtools – Diversify!

DTAtools – Accuracy vs. responsiveness

TŲ

WIEN

Isogeometric Analysis Networks

DTAtools – https://visualization.surf.nl/dtatools

DTAtools – Deployment strategy

DTAtools – Deployment strategy 2.0 [WIP]

Lessons learned & open issues

- Technical solutions alone are not enough, workflows need to be adapted
- It takes time to figure out the added value of new technologies such as XR
- Problems need to be solved when they occur, not ahead of time but also not too late
- Usability of DTA workflow still needs to be evaluated at large

Please contact us

